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1 Principles of Probability
1.1 Stochastic processes (chance regularities)
Example 1. Sum of two dices.

Suppose we have T = X1 +X2. We know this is Stochastic. T � N (µ, σ).

Definition 2. Event space (F) mush conform to a series of conditions:
1. The event space contains sample space S ∈ F .
2. The event space is closed under compliments.
3. The event space is closed under countable unions, Ei ∈ F → (∪∞

i=1Ei) ∈
F .

1.2 Factorizing joint probabilities
p(A,B) = p(A | B)p(B)

p(A,B,C) = p(A | B,C)p(B,C) = p(A | B,C)p(B | C)p(C)

1.3 Joint distributions
PXY (x, y) = P (X = x, Y = y)

Consider the expectation

E[f(x, y)] =
∫
x,y

f(x, y)p(x, y)dxdy

1.4 Marginal distribution
PX(x) =

∑
all yi

PXY (x, yi)
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1.5 Conditional distribution

PX|Y (xi | yi) =
PXY (xi, yi)

PY (yi)

The conditional expectation is given by

E[X | Y = yi] =
∑
xi∈X

xiPX|Y (xi | yi)

In continuous setting,

E[g(Y ) | x] =
∫
R
g(y)p(y | x)dy

1.6 Independence
It can be shown that if X and Y are independent, there exists some functons
g(x) and h(y) such that:

f(x, y) = g(x)h(y), ∀x, y

1.7 Covariance
cov[x, y] = E[(x− E[x])(y − E[y])] = Ex,y[xy]− Ex[x]Ey[y]

2 Parameter Estimation
2.1 Properties of estimators
Consistency

P (|θn − θ| > 0) → 0 as n → ∞

Bias θn is unbiased if

E[θn] = θ

Efficiency A UMVUE is considered to be efficient.

MSE
MSE = variance+ bias2
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2.2 Method of moments
The method of moments amounts to matching population moments to sample
moments. Using Xi ∼ Ber(θ) as an example,

E[Xi] = θ

Therefore,

θ̂ =
1

N

∑
xi

MoM is consistent, but might not efficient.

2.3 Maximum Likelihood Estimation
First write out the likelihood function

L(θ | x1, ..., xn) =

n∏
i=1

f(xi | θ)

Our job is to solve

d

dθ
L(θ | x) = 0

2.4 Maximum a posteriori estimate
θ̂MAP = argmax

θ
L(θ | x1, ..., xn)π(θ)

3 Bayes Theorem
3.1 Bayes’ Rule

P (A,B) = P (A | B)P (B)

Samely we have

P (A,B) = P (B | A)P (A)

Therefore, we have

P (A | B) =
P (B | A)P (A)

P (B)

Posterior
P (A | B)
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Likelihood
P (B | A)

Prior
P (A)

Marginal
P (B)

Samely,

posterior =
likelihood× prior

marginal

3.2 Inference and Decisions
3.2.1 Classification

argmin p(mistake) =

k∑
i=1

p(xk/∈j , Ck)

3.2.2 Loss minimization

3.3 Prior introduction

p(θ | D) =
p(D | θ)p(θ)

p(D)

The priors can be proper or improper.

3.3.1 Conjugate priors

Conjugate prior are priors that induce a known distribution in the posterior.
When computing the posterior probability, if we have a justifiable reason for
using pairing the likelihood with a conjugate prior, we will find the posterior
paobability is a known distribution. For example, consider

X ∼ Ber(θ)

The likelihood takes the form

f(x|θ) =
n∏

i=1

θxi(1− θ)1−xi = θk(1− θ)n−k, k =
∑

xi

If we assume the prior take the form of a Beta distribution,

f(x|θ)p(θ) ∝ θk(1− θ)n−k · θα−1(1− θ)β−1 = θα+k−1(1− θ)β+n−k−1

which we recognize as Beta(α+ k, β + n− k) in θ.
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3.3.2 Informative vs non-informative priors

Noninformative priors are priors that suggest ignorance as to the parameters.
These are sometimes called vague or diffuse priors. The priors generally cover
the region of the parameter space relatively smoothly.

Common noninformative priors include Unif(−1000, 1000),N (0, 10000).
Note that seemingly vague priors can actually be strongly informative.
Consider the case of modeling a binary model for y following Bernoulli. A

common modeling technique would be to transform the problem using the logit
function. For instance:

y ∼ Ber(p)

p = logit−1(β0 + β1)

Placing priors [β0, β1] ∼ N (0, 100) places under weight on 0 through the
transform while using a weakly informative prior [β0, β1] ∼ N (0, 22) gives a
more diffuse effect on the parameter posterior.

3.3.3 Jeffrey’s prior

This prior is non-informative in that we don’t specify prior information, but it
is informative in that we use the data to information to shape the prior.

The fisher information tells us how much information about θ is included in
the data.

Formally, Jeffrey’s prior is derived by:
p(θ) ∝

√
In(θ), where

In(θ) = Eθ

[
∂ ln f(θ)

∂θ

]
= −Eθ

[
∂2 lnL(θ)

∂θ2

]

4 Common distributions
4.1 Parametric vs. Non-parametric models
4.1.1 Student’s t-distribution

With univariate Normal distribution N (x|µ, τ−1). The conjugate prior for the
precision τ (inverse of variance) is given by a Gamma distribution Γ(τ |a, b).

We can compute the marginal distribution for x by using the prior of the
precision and integrating our the dependence of the normal distribution on its
precision over all values of precision from 0 to ∞.

p(x|µ, a, b) =
∫ ∞

0

N (x|µ, τ−1)G(τ |a, b)dτ

Sometimes, people call this mixture of individual normal distributions with
different variances.
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4.2 MLE with Beta distribution
4.3 Gaussian Mixture Model
Arbitraty distribution can be approximated by Gaussian mixture model.

p(x) =
∑
k

wkN (x|µk,Σk)

where wk is the weight of each Gaussian.
It is also possible to create mixture of Bernoulli with

∑
wk = 1. The term

wk can be interpreted as the prior probability of picking the “k”th term. The
term p(x) can be written using Bayes Theorem

p(x) =
∑
k

p(k)p(x|k)

This can give rise to p(k|x) as responsibilities. The name arises from the
fact that the term p(k|x) explains the responsibility that the ‘k’th component
has in explaining the observation x.

4.4 Non-parametric methods: Kernel Density Estimation
Histogram, a non-parametric method.

Kernel Density Estimation Gaussian kernel.

5 Sampling Algorithms
How we can sample from distributions.

Why don’t we just do uniform sampling??
In high-dimensional settting, we have to sample nd samples, while most of

the things may be very concentrated.

5.1 Basic of everything: Sampling Unif(0, 1)

Generate a random number from 0 to 1.

5.2 Sampling discrete Unif(0, n)

We can use int(n · c), c ∼ Unif(0, 1).

5.3 Inverse transform sampling
If a RV Y is generated by applying function F to X we get

Y = F (X)
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which implies that we can apply an inverse transformation to Y (if exists)
to obtain X.

F−1(Y ) = X

5.3.1 Derivation

1. PDF of Y is p(y)
2. PDF of Z is p(z)

y = f(z)

The distribution of Y

p(y) = p(z)|dz
dy

|

If Z ∼ Unif(0, 1),

p(y) = |dz
dy

|

Therefore,

z =

∫ y

−∞
p(y)dy = h(y)

Generate y by

y = h−1(z)

5.3.2 Algorithm

1. Calculate the inverse of CDF, given by F−1

2. Sample from Z ∼ Unif(0, 1)
3. Use sampled Zi to obtain

Y ∼ F−1(Unif(0, 1))

5.3.3 Example

An exponential distribution is given by the PDF

p(y) = λe−λy

The CDF is given by

F (y) = 1− e−λy

Consider the inverse function
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F (y) = h(y) = z = 1− e−λy

We then have

y = − log(1− z)/λ

5.4 Rejection sampling
1. Draw z0 from q(z) and compute kq(z0)

2. Draw a uniform number u0 from [0, kq(z0)]
3. If u0 > p(z0), the sample is rejected otherwise save u0.
4. Continue with (1) - (3) until enough samples are drawn.
The samples are accepted with probability p(z)

kq(z) . For effective rejection
sampling, we want the number of samples that are rejected to be minimal.
This is possible only when the envelope distribution is close to the desired
distribution. It is also inefficient to use in high dimensional spaces for the
following reasons:

- The ideal value of k in a ’D’ dimensional space is given by (σ
q

σp
)D, which

may be very large.
- The acceptance ratio for two normalized fistributions with densities p(x)

and q(x) is simply 1
k

- This would be extremely inefficient

5.5 Importance sampling
Importance sampling is useful for computing terms such as the expectation of
a function f(x) with distribution p(x).

Ideally, we want to sample in space where the product f(x)p(x) is high since
the expected value is computed for a discrete distribution as

E[f ] =
∑
i

p(xi)f(xi)

Or, for continuous cases

E[f ] =
∫

p(x)f(x)dx

Importance sampling is also based on the idea of using another proposal
distribution that is easier to sample from, compared to the original distribution
p(x).

E[f ] =
∫

f(x)p(x)dx =

∫
p(x)

q(x)
q(x)f(x)dx ≈ 1

L

drawn from Q(x)∑
l

p(x)

q(x)
f(x)
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The term p(x)
q(x) is known as importance weights. Similar to rejection sampling,

the envelope distribution should be close to the desired distribution for efficient
sampling.

6 Bayesian vs. Frequentists
6.1 Likelihood
Likelihood is type of probability that has already been observed given a certain
hypothesis parameters.

Likelihood(θ | data) = P (x | θ)

Likelihood is not a probability (not integrate to 1). Therefore we call it
likelihood (since not integrating to 1).

6.2 Inference
Inference refers to the process of identifying the distribution of the parameters
that represent out hypothesis. We can denote posterior as

P (θ | X)

6.3 Features of Bayesian Inference
1. Assign a probability to both hypothesis (Posterior) and data (Likelihood)

2. Utilize expert knowledge through the formulation of ’subjective’ priors.
The use of priors has been a source of debate.

However, when this is clearly stated it allows everyone to understand and
challenge the assumption behind the results possibly allowing for refinement of
the priors.

3. Can be computationally expensive to compute the posterior (need to
integrate over several parameters).

A lot of times, we have to resort to approximate techniques since the inte-
grals associated with the posterior calculation in Bayesian statistics cannot be
computed analytically.

A number of approximation techniques are employed.
3.1 Laplacian approximation
3.2 Variational approximation
3.3 Monte Carlo techniques (*)
3.4 Message passing algorithms
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7 Model Performance
7.1 Overfitting vs. Underfitting
7.2 R2 and Explained Variance
Derivation of R2.

If we observe data given by yi, such that the fitted model predicts fi for each
point i, we can write the mean of all the observed data, given by ymean as

ymean =
1

n

∑
yi

Total sum of squares, which is proportional to the variance of the data, is

SStot =
∑

(yi − ymean)
2

The residual sun of squares (also called the error)

SSres =
∑

(yi − fi)
2

Now, R2 is defined as

R2 = 1− SSres

SStot

= 1− UnexplainedV ariance

= ExplainedV ariance

7.3 Cross-Validation
k-fold validation.

7.4 Information Criteria
1. Log-likelihood

2. Akaike Information Criterion (AIC)

3. Widely Applicable Information Criterion (WAIC)

4. Deviance Information Criterion (DIC)

5. Bayesian Information Criterion (BIC)

For (2) to (5),

• They have similar form like:

metric = model fit+ penalization
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• The model fit is measured using log-likelihood, penalization normally rep-
resents uncertainty of parameter

• Lower values imply a better fit

AIC, BIC, DIC use the joint probability of the data, wheras WAIC computes
the pointwise probability of the data.

In the following, we assume the model params are independent, thereby the
joint probability is the same as the product of the pointwise estimates.

7.5 Log-likelihood and Deviance
In a normal sense, the Mean Squared Error is given by

MSE =
∑

(ytrue − ypred)
2/n

7.5.1 Log-likelihood

Loglikelihood =
∑

log p(yi|θ)

If the likelihood function is Normal, we have log-likelihood porpotional to
MSE.

7.5.2 Deviance

Deviance = −2
∑

(log p(yi|θ)− log p(yi|θs))

7.5.3 A note on MLE

Find θ that maximize
∑

p(yi|θ).

7.6 Posterior Predictive Distribution
Bayesian estimate of posterior predicrive distribution. This allows us to measure
the model’s probability of generating the new data i.e. p(ynew|y).

This can be interpreted as asking “What is the probability of seeing the new
out-of-sample data, given the model that was trained on the in-sample data?”.
The predictive accuracy can be written as

accuracy = p(ynew|y) =
∫

p(ynew|θ)P (θ|y)dθ,

where p(θ|y) is the posterior distribution for θ and we integrate over the
entire distribution of θ.

Now this is simply the expectation of p(ynew|θ) over the posterior distribu-
tion of θ.

In simple terms, it is the average of all the probabilities of seeing ynew
calculated over all possible values of θ.
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accuracy = E[p(ynew|θ)]

This has the following steps

1. Draw a θi from the posterior distribution for θ.

2. Given the θi, how likely we can observe ynew (compute p(ynew|θ))

3. Repeat (1) and (2) several times to compute this expectation.

This is also computed using the log frequently as

accuracy = log(E[p(ynew|θ)])

7.7 AIC, BIC, DIC, and WAIC
7.7.1 Akaike Information Criterion (AIC)

The AIC is derived from the world of Frequentist statistics and does not use
the posterior distribution.

Therefore, instead of integrating over the posterior, it uses the MLE estimate
of θ. The term E[p(ynew|θ)] is now replaced by p(ynew|θMLE).

AIC = −2
∑

log p(yi|θMLE) + 2nparams

Here nparams refers to the number of parameters in the model and θMLE

is the MLE estimate of θ. We want a model with a lower AIC and the second
term is intended to penalize complex models.

7.7.2 Bayesian Information Criterion

BIC = −2
∑

log p(yi|θMLE) + nparam log nsamples

7.7.3 Deviance Information Criterion

We use θBayes as the posterior mean for DIC.

DIC = −2
∑

log p(yi|θBayes) + 2V arθ∼posterior[log p(yi|θ)]

7.7.4 Widely Applicable Information Criterion (WAIC)

WAIC is a Bayesian extension to AIC. The derivation for the log pointwise
predictive density is similar to what we covered above, but it replicated here to
keep it consistent with referred paper.

WAIC = −2
∑

log
1

S

∑
S

p(ynewi |θS) + 2
∑

V arS(log p(ynewi |θS))
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7.7.5 Qualitative Discussion

7.8 Entropy and KL Divergence
Entropy is defined as

H(x) = −
∑
x

p(x) log p(x)

KL divergence is defined as

KL(p||q) =
∑
x

p(x) log
p(x)

q(x)

=
∑
x

p(x) log p(x)−
∑
x

p(x) log q(x)

8 Foundation of Bayesian Inference
8.1 Markov Chains
8.1.1 Stationary distributions

Xt+1 = Xt

8.1.2 Ergodicity

1. If we sample s space long enough we will cover almost every point in that
space (theoretically)

2. If we obtain a statistics from a sequence such as the mean, this statistics
should be the same if we recompute it using a different sequence drawn
from the same set of events. The implication here is that there is only one
distribution unlike a non-stationary distribution which has an infinite set
of PDFs.

8.1.3 Why does this work?

Consider a simple case that

A ↔ B ↔ C

Consider from B to C (B → C).
The transition probability can be written as

PBC = 0.5 ·min(
PC

PB
, 1)

The transition probability from C to B is
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PCB = 0.5 ·min(
PB

PC
, 1)

Say the ratio is

PBC

PCB
=

min(PC

PB
, 1)

min(PB

PC
, 1)

If PC > PB

PBC

PCB
=

PC

PB

If PC < PB

PBC

PCB
=

PC

PB

With long enough runs, the amount of samples will be equal to its ratio
within the entire PDF. Therefore we can generate such empirical distribution
via MCMC.

8.1.4 Proposal distribution

An easy to sample distribution such as Gaussian q(x) such that

q(xi+1|xi) ∼ N (µ, σ)

8.2 The Bayesian Inference Process
1. Obtain the data and inspect it for a high-level understanding of dist. and

outliers

2. Define a prior for the data based on the understanding of the problem

3. Define a likelihood distribution for the data and obtain the likelihood of
the data given this likelihood distribution

4. Obtain posterior distribution using prior (2) and likelihood (3) by applying
Bayes Theorem

9 Metropolis Algorithm for Sampling
9.1 Problem statement
We start off by modeling discrete events via Poisson

f(x) =
e−µµx

x!
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9.2 Outline of Metropolis Algorithm (MA)
What do we want to compute? Estimate distribution of µ.

What do we have available? Observed data!

1. Start with a parameter sample µcurrent that is drawn from a distribution

2. Draw a second parameter µproposed from a proposal distribution

3. Compute the likelihood for both params

4. Compute the prior probability density for both params

5. Compute posterior probability density of both params by multiplying prior
and likelihood from (3) and (4)

6. Select one param from the posterior probability density computed above
using a rule and save the selected on as µcurrent

7. Repeats (2) to (7) till a large number of parameters have been drawn

8. Compute the distribution of the parameter µ by plotting histogram and
estimate via MAP (or anything)

9.3 Detailed example with calculation
1. Propose a single value for param µcurrent = 7.5

2. Compute prior of µ = 7.5. Using Gamma prior

Gamma(µ = 7.5|α, β) = βα7.5α−1e−7.5β/Γ(α)

3. Compute the likelihood of single point data ’x’. Given the param of 7.5.
The likelihood distribution was a Poisson distribution given by

Poisson(x|µ = 7.5) = e−µµx/x! = e−7.57.5x/x!

4. Compute the posterior density via

Posterior ∝ Prior · Likelihood

By Gamma-Poisson, we know

αposterior = αprior +

n∑
i=0

xi

βposterior = βprior + n
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5. Propose a second value µproposed, which is drawn from a distribution called
a proposal distribution centered on µcurrent. The Standard deviation is a
tunable parameter. We assume we drawn 8.5.

6. Select one value from the current and the proposed value with the follow-
ing two steps
a. Compute the probability of moving to the proposed value as

pmove = min(
P (µproposed|data)
P (µcurrent|data)

, 1)

7. If we moved to the proposed value, save the proposed value.

Traceplot

10 Gibbs sampling
Let’s consider N (µ, τ) we will need the conjugate solution for computing pos-
terior.

If

µ ∼ N (µprior, τprior)

Select µprior = 12 and τprior = 0.625 which corresponds to a σ = 4.
Select the shape parameter αprior = 25 and the rate parameter βprior = 0.5.
The conjugate solution is

µposterior = (τpriorµprior + τ0
∑

xi)/(τprior + nτ0)

τposterior = τprior + n× τ0

Conjugate solution for τ with a Gamma prior

αposterior = αprior + n/2

βposterior = βprior +
∑

(xi − µ1)
2/2

10.1 Outline of Algorithm
1. Specify priors for µ, τ

2. Choose τ to start and select τ0 from the Gamma prior distribution.
3. Start first trial. We obtain a sample for µ from the posterior distribution

of µ given the value of τ0.
4. We continue trail 1 since we need to obtain a value for τ1 conditional on

the value µ1. Similar to step (3), we use conjugate solution to obtain posterior
with sampled µ1. Deaw τ1 from posterior.
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5. Accept both values in (3) and (4).
6. Repeat (3) to (5) till we have sufficient number of samples. Iteratively

update the params to coordinate ascent the optimization.

11 Hamiltonian Monte Carlo
Consider position x, momentum m and Hamiltonian H through

dx

dt
=

dH

dm

dm

dt
= −dH

dx

These differential equations depend on the probability distributions we try-
ing to learn.

We navigate these distributions by moving around them in a trajectory using
steps that are defined by the position and momentum at that position.

HMC is based on conservation of energy. The sum of kinectic and potential
energy of particle. Or just saying the total energy of the system.

H(x,m) = U(x) +KE(m)

where U(x) is potential energy and KE(m) is the kenetic energy.
The potential energy is measured using the negative log density of posterior

distribution. When the sampler is far away from the probability mass center, it
has high potentital energy but low kinetic energy.

When the trajectory is closer to the center, it will have high kinetic energy
but low potential energy. The KE involves a mass matrix Σ that is also the
covariance of normal distribution from which we randomly draw a momentum
value m in our Monte Carlo process. An outline of the steps involved in this
algorithm is given below.

11.1 Outline of Algorithm
• We start from initial position x0

• Each step, we select a random value for momentun from a proposal dis-
tribution. This is usually a normal distribution such that

m ∼ N (µ,Σ)

• From the current position and using the sampled value for momentum, we
run the particle for time L ·∆t using leapfrog integrator which is a numer-
ical integration scheme to march forward in time. This terms ∆t refers to
the time step taken for the integrator, and L refers to the total number of
steps taken. L is a hyperparam that needs to be tuned carefully. If we are
at a spatial location indicated by step n, we start from time 0 (integration
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time) and integrate till time t to get the following

xn(0) → xn(L∆t)

mn(0) → mn(L∆t)

• The leapfrog can introduce error. We can correct the error using MH step
that probabilistically accepts new values of xn+1 as xn(L∆t) or xn(0).
The acceptance probability here is given below.

acceptance =
p(xn(L∆t))

p(xn(0))
× q(m(L∆t))

q(m(0))

Here, p(xn(L∆t)) corresponds to the posterior probability density at the
end of the integration scheme and p(xn(0)) corresponds to the posterior
probability density at the beginning of the integration scheme. Also, q(m)
is the probability density of the proposal distribution for the momentum.

• Draw a random value u from a uniform distribution Uni[0, 1] and perform
MH acceptance.

• Record new position xn+1. We repeat this step for n times.

11.2 Impact of T = L∆t

When there are divergences the sampling process that happens in regions of
high curvature, we might have to resort to smaller values of ∆t.

The use of larger than desirable values for T = L∆t results in the sampler
making U-turns at high curvature positions.

The No U-Turn sampler is a HMC that L is automatically tuned.

12 Properties of MCMC
12.1 Representativeness
The samplers from the MCMC process should be representative of the posterior
distribution, it should cover the distribution space thoroughly. The final state
of the inferred distribution should be independent of the initial value.

There are two ways to measure if your inferred distirbution is representative
of true distribution.

1. Visualize inspection using a trace of convergence.
2. Numerically measures for convergence.

12.2 Efficiency
Choose the correct sampling method.
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13 MCMC
13.1 Monte Carlo estimation
We know that

π

4
= E[x2 + y2 ≤ 1]

≈ 1

M

M∑
s=1

[x2
s + y2s ≤ 1]

xs, ys ∼ U(0, 1)

In general, we wish to estimate

Ex∼p(x)[f(x)] ≈
1

M

M∑
s=1

f(xs)

xs ∼ p(x)

Why do we need to estimate expected value?
Example 1. Full Bayesian inference

p(y|x, Ytrain, Xtrain) =

∫
p(y|x,w)︸ ︷︷ ︸
neural net

p(w|Ytrain, Xtrain)︸ ︷︷ ︸
All possible networks

dw

= Ep(w|Ytrain,Xtrain)[p(y|x,w)]

We can have the posterior via

p(w|Ytrain, Xtrain) =

loss︷ ︸︸ ︷
p(Ytrain|Xtrain, w)

prior︷︸︸︷
p(w)

Z
Example 2. M-step of EM-algorithm

max
θ

Eq log p(X,T |θ)

13.2 Sampling from 1-d distributions
13.2.1 Discrete distributions

r ∼ U [0, 1]
Suppose we have the case that

p(A = a1) = 0.6, p(A = a2) = 0.1, p(A = a3) = 0.3

Basically, 1d discrete distribution with finite number of values are easy.
At least then number of values are < 100,000.
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13.2.2 Continuous sampling (rejection)

How can we generate samples from N (0, 1)?
Use CLT.

z =

12∑
i=1

xi − 6, xi ∼ U [0, 1]

Then,

p(z) ≈ N (0, 1)

What if we have a mixture of Gaussian, something non-convex?
Let’s upper-bound this distribution by q(x) = N (1, 32), and have p(x) ≤

2q(x).
First, we have

x̃ ∼ q(x), y ∼ U [0, 2q(x̃)]

We have to reject some of the points.
Accept x̃ with probability p(x)

2q(x) : if y ≤ p(x).
How efficient is it?

p(x) ≤ Mq(x)

Accepts 1
M points on average.

p̂(x) ≤ ZM︸︷︷︸
M̃

q(x)

Pros:
Work for most distributions
Cons:
If p and q are too different, we will have large M , then the sampling will be

very slow.
M will also be very large for d-dimensional distributions.

13.3 Markov Chain Monte Carlo
13.3.1 Markov Chains

T (L → L) = 0.3, T (L → R) = 0.7, T (R → L) = 0.5, T (R → R) = 0.5.
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13.3.2 Using Markov Chain

• We want to sample from p(x)

• Build a Markov Chain that converge to p(x)

• Start from any x0

• For k = 0, 1, ...

xk+1 ∼ T (xk → xk+1)

• Eventually xk will look like samples from p(x).

13.3.3 Do Markov Chains always converge?

If we have such system that

T (L → L) = 0, T (L → R) = 1, T (R → L) = 1, T (R → R) = 0.

This never converge.

Definition 3. A distribution π is called stationary if

π(x′) =
∑
x

T (x → x′)π(x)

Theorem 4. If T (x → x′) > 0 for all x, x′, then exists unique π:

π(x′) =
∑
x

T (x → x′)π(x)
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