Optimal Transport and Machine Learning

November 19, 2021

1 Introductory notes

Monge 1781.
Suppose x and v are two measures on R?, d > 1.
Consider any function T : R — R that push forward p to v.
Suppose X ~ p, then y =T(X) ~ v.

Problem 1.1. Monge’s problem. What is the infimum of

/ T (z) — al|u(dr) = E[||T(X) — X]|]
over the set of all push forwards of u to v?

Monge’s idea: move dirt to castle.

Vol(Dirt) = Vol(Castle)

Every = in Dirt should be carried to y. We wish to have minimum work
possible. Two points are ||y — z||.
Summing up all the things,

inf [ {T(2) ol lu(do)

This is a hard problem.

Consider if we just take y = dg, and v = Ber(1/2).

The set of pushforwards is not nice (not convex, smooth, ...)

How to generalize? Monge is mapping cost as ||T(x) — z|| = cost of trans-
porting.

Why not use ||T(z) — z||>? Why note use ||T'(z) — z|[*°?

Define a cost function c¢:R% x R — [0, 0]
Generalized Monge Problem (MP):
find

inf/c(:c, T(z))u(dx)

among all pushforwards of u to v.



Kantorovich’s relaxation: without enforcing existence of mapping.

Coupling Given p and v, a coupling of (u,v) refers to any joint distribution
on R% x RY,
such that if (X, y) ~ p, then X ~ p, Y ~ v.

Example 1.2. Suppose T is a pushforward from p to v, then
(X,T(X)) where X ~ p is a coupling of (u,v).

Example 1.3. Suppose X ~ p independent of Y ~ v,
then (X,Y) ~ u® v is a coupling of (u,v).

Let 7(u,v) be the set of couplings, then m(u,v) # 0.
Problem 1.4. Kantorovich Problem (KP).

Find
inf c(z,y)dr
WGH(#W)/( )
E.g.
inf z — y||*n(dzd
ot [ 1k~ ylPr(dody)
Advantage

1. m(w,v) is a non-empty convex set.
2. The function being optimized is affine.

3. KP is a linear programming problem.

In details:
1. 7(p,v) is convex. How to verify 7 € P(RY x R?) is an element in TI(y, v/)?
Take some A C R?, sample (X,Y) ~ I,
check:
Pr(z € A) = u(A), Pu(y € A) = v(A),VA.

Alternatively, consider f to be a bounded function,

Check

Intersecting P(RY x R9).
2. The function is linear in 7



How are MP and KP related?
What is the value of problem?
Is inf = min? Does solution exist?
Is the minimizer unique?

If so, how does the optimizer look like?  Will focus mostly on c¢(z,y) =
Iy — =[]

1.1 When is the infimum achieved?

Weienstrass Theorem.

Theorem 1.5. Suppose the cost function c is continuous, then KP admits a
solution. That is, there is some coupling 7 € I(u,v) that attains infinum.

Proof. Depends on this basic lemma. O

Lemma 1.6. If f is a real-valued continuous function on a compact metric
space X, then 3 some x* € X such that

f(@") = min f(z)

rzeX

Proof. Let | = inf, f(x). Assume | > —oo0.
For every n > 1, 4 some z,, s.t.

1
L< fon) <14 —
n
Then sequence (z,,n > 1) has a converging subsequence.

T, — T

What is f(a*)?

Fla*) = lim f(wa,) < lm (4 —) =1 = inf f(z)

k—o00 Nk

Metrics on probability measures. P(R")

Definition 1.7. For a sequence (pg, k > 1) in P(R™), say limy_,,, = p if

lim/fdp;€ = /fdp, for all bounded continuous functions f : R" — R



“Weak convergence of probability measures” There is a metric that gives
us this weak convergence.

dipospn) = sw | [ g~ [ sip
feBL
BL is the set of all functions bounded (B) by 1 and is Lipschitz (L). |f(z)| <
L |f(@) = f@)l < llz—yll.

Theorem 1.8. For any p and v, the set
II(p, v) is compact in the topology of weak convergence.

Proof follows from Prokhonor’s Theorem. We can verify from this theorem
(for stating out what is weak convergence).

Thus, TI(p, v) is a compact metric space.

The entire P(R™) cannot be compact.

Pr = 5k7kllﬂgo/f($)dpk = f(k)

Proof. [Sketch|
Assume p, v are compactly supported. It means there exist a big compact
ball in R? that the entire measures live in this compact ball.
Every element in IT(p, v) must be supported in some big enough box [—a, a]??.

On that box, the continuous cost function c is also bounded.
Thus,

mell(p,v) — /c(m,y)dﬁ

is a continuous function.
By Weienstrass, d7*,

inf cdm = /c x,y)dr*.
WEH(M,V)/ (@9)

1.2 Linear Algebra
Suppose

1 n

i=1

1 n
V= gZéyJ

=1

What is II(u, v)? Given by Doubly-Stochastic matrices (DS matrices).



Definition 1.9. A, = (a;;) is DS if
1.a; >0
2. Row sum =1
3. Col sum =1

1A = H(u,v).

P(X = Ii,Y = y])
Special case: Permutation matrices. 1-2, 2-1, 3-3.

010
100
0 01

1
(=A;) <= Push Forwards
n

KP in Linear Algebra.

C = (cij), cij = (@i, y;)

1 1 n n
E<A’C> = EZZCLZ‘J‘CZ‘]‘

i=1 j=1
KP becomes
inf (A,C)
A over all DS matrices nxn

Fact 1.10. This mimimum exists and is achieved at some permutation matriz.
(KP)=(MP)

p=Y pibe,v =) 4;,,
Find TI(u, v) is some set of matrices
1gf<C, A)

is a Linear programming problem.



2 Convex functions and their duals

2.1 Review
MK OT problem
c(a,y) = |ly — ||
Given u,v on R?

m(u,v) — set of couplings

KP is

inf — z||%dn
it / ly — 2|

If this infimum is given by a coupling (X, T'(X)), X ~ u, T(X) ~ v. We say
KP admits a Monge solution.

Example 2.1. = N(0,1) on RY. v = N(w,I) on R What is the solution
of KP?
The solution is a shift that

Tx)=z+w

Here, (Z,T(Z)) is the optimal solution to (KP).

How do I argue this? Brenier Theorem.

The reason is T(X) = Vf(z), f(x) = 3||z + w|[* . If you can find a convex
function gradient, this must be the optimal.

If 1 has a density (absolutely continuous), no matter what v is, there always
exists some convex function f, V f pushforwards p to v.

Weak convergence of measures (py, k > 1) seq. in P(R9)

Say pr — p if
/ fdpx = / fdp

For every bounded continuous function f : R"™ — R.

Example 2.2. From [0, 1], draw k partitions.
or = Um’f[%,i =1,2,..., k]
When k& — oo,

pr = p=Unif[0,1]
Why is this true? Take any f bounded and continuous.



n 1
[ oe =3 5610 = 3 $/0) = [ S = [ F)pldo)

i=1 0

Even Xl, ...,Xk ~iid UTL’Lf[O, 1]

k
> ox, =E Unif[0,1]
=1

x| =

2.2 Convex Analysis

Definition 2.3. f:R? — R U {+oc0o} is called convex if for any z,y € R?, any
0<t<l1

f(A =tz +ty) < (A —1)f(z) +1f(y)
And strictly convex if
f((A =tz +ty) < (1 —8)f(x) +1f(y)
Definition 2.4. f is concave if —f is convex.

Definition 2.5. A is a convex set, if x,y € A, then

{@-t)z+ty,0<t <1} C A
Example 2.6. z € RY, f(x) = ||z||? strictly convex.
Example 2.7. If f(x) =), |z;|. This is convex but not strictly convex.

Example 2.8. f(x) = |[[z[[},p > 1, is strictly convex. If p < 1, concave
function.

Example 2.9. f(x)=log (Zle eX'i) ,x € RY.
Verify this is convex. Show the Hessian.

Convex functions could be infinity somewhere

—logx x>0
Example 2.10. =
xamp f(@) {m .

This is also a convex function.

Domain of f = {z € R?: f(x) < +oo} # 0.



2.2.1 How convex sets related to convex function

Suppose € is a convex set.
Convex indicator function: f(z) = 0, z €
+oo, x ¢
Verify that f is convex function if {2 is convex set.
Conversely, convex functions to convex sets.
Suppose [ is a Convex function. Consider the epigraph of f

epi(f) = Q= {(z,1) € R .t > f(x)}

f is convex function if and only if the epigraph is convex set.

Properties

1. Closed under supremum.

{fa,OéEI}

fo = RU{o0}

is convex, then so is
f(x) = sup fa(x).
29,0 <t <1
fall=t)z +ty) < (1= t)fa(z) + tfaly)
Then
sup fa((1 = )z +ty) < sup[(1 — ) fa(@) + tfa(y)]

2. Convex functions may not be always differentiable, or continuous.

22, —l<z<1

fle)=<2, 2=+1
00, |z|>1

This function is convex but not continuous at the boundary.

It is locally Lipschitz in the interior(dom(f))

It is differentiable almost everywhere inside interior(dom(f)).

It is “double differentiable” a.s.



We are only going to consider a convex function that are lower semicon-
tinuous

() > x
lim f(zg) > f(z) < epi(f) is closed.

3. Every convex lower semicontinuous function can be written in the follow-
ing representation

J(aq € R%, by €R,a € 1)

such that

f(z) =sup |{aa,x) + by
o —_———

af fine in x
This is a dual representation of f.

Definition 2.11. Let f : R? — R. Define Legendre transform (convex conju-
gate) of f,

f*(y) = sup [{z,y) — f(x)] = convex l.s.c function
zERC

Double star?

[ (@) = sup [(z,y) — f*(y)]

y€eRd

[ =f < fisconvex +lsc
Otherwise, f** is called “convex evelope”.

Example 2.12. f(z) = 1||z[|%.

) =sup | (0.9) = gl

Let g(z) = (z,y) — 5llz[|

Therefore,

f = f* is self-dual.



—logz, >0
Example 2.13. f(x) =
P f(z) {Jroo’ 2 <0
* _ _1_1Og|y|7 y<0
fy) = {HX), >0

What if we have a f**? Since f(z) is convex and lsc, we get back f(z).

0 x € )
E le 2.14. Q =[—-1,1]¢ =<7
xample =1, 1% f() {m e Q

[ (y) = sup [(z,y) — f(z)]

z€eRC

= sup [z, y)]
zeN
d
= sup T3
16[71,1]‘1; e

[yl

[ (@) = sup [(z,y) — [ (y)]

y€RI
=;;1H£i [(z,y) — [lyll]
B {Jroo, if v ¢Q
0, ifre

Interestingly, if Q = (—1,1)4, f**(z) = [-1,1]%.

Theorem 2.15. Suppose f and f* are convex and differentiable over R%. (Dif-
ferentiable implies lsc).

1. f(z) + f*(y) > (z,y) for all 2,y € R% with = holds if and only if y =
Vf(z).

2. Vf:R? 5 RY Vf*: RY — R? are inverse of one another.

VIV (W) =y

VIr(Vi(z) =

Proof. Idea of the proof.

(1)

10



[ (y) = sup [(z,y) — f(@)] = (z,y) — f(x)

f@)+ 7 (y) = (z,9)
Where the supremum is achieved?
FO condition:

y=Vf(z)

[ () =z, y) = f(x),y = V()

(2) Vf and Vf* are inverse of each other. Very interesting fact.
Start from (1). Replace f by f*, and f* by f** = f.

f(x) =sup [(z,y) — f*(y)] , mazximized when x = V f*(y).
y

f(@) =(zy) = [ (y),z =V (y)
From (1), (z,Vf(x)) = f*(Vf(2)) = f(2).

2.3 Weak Convergence distances

BL denotes bounded Lipschitz that ||f]lc < 1, Lip — 1.
[ tan- [ sav

Wi(p,v) = Hi(gfu) / ||y — z||*dr = dual representation

sup
feBL

Consider

Then we can see Brenier’s Theorem.

Vfip—v
Vi :iv—u

3 Kantorovich Duality

3.1 Review of Convex functions

f:R% = RU {oo}, convex and lower semicontinuous.
We can define dual/conjugate with

[ (y) = sup [(x,y) — f(z)]

zERY

11



L Va,y, f(z) + f*(y) — (z,y) > 0,=0iff y = Vf(z) or x = Vf*(y).
2. VF(Vf*(z) ==

zlogx, x>0
. ¢x Isc.

Example 3.1. d=1. f(z) = { -
00, x

Check convexity,

f(x)=1+logz
Check Isc.
lim xlogx = 0
z—0

Let y=1+1logz, v =¥~ 1.
() (g) = e

f*(y) = sup [zy — xlogz] = sup [zy — xlogx] = eV~ !
x x>0

Domain of f* is R and Domain(f) = [0, 00).
Another observation
Take f cx and lsc

inﬂ{d f(xz) = — sup [—f(z)]

re zERC
= —sup[(z,0) — f(2)]
-1

The infimum is attained via checking the dual at 0.
Let x* is the unique minimizer,

Vi(x*)=0,2" =Vf*(0)
z* =V f(0)

3.2 Kantorovich Duality

Very similar to 3.1, but in infinity dimension.

Consider the optimal transport problem with a continuous cost ¢ : R xR% —
[0, o0].

For m € II(y, v),

I(7) = / oz, y)dn

12



cost of transport using the plan 7.
We wish to find out

Y

This is doing in the space of functions/measures.

For any function ¢ € L'(u) and v € L'(v). L! means that the integral is
finite.

In this case, [ |o]du < oco.

Define

How) = [e@adu+ [
Let @ = {¢, 9 such that p(z) +(y) < c(z,y), V2, y}.
Theorem 3.2. (Kantorovich Duality)

inf I(m) =supJ(p, ).
mell(p,v) @

The supremum above does not change if we restrict v, to be bounded con-
tinuous functions.

One side is obvious.
Suppose 7 € II(p, v). Take any @, ¢ satisfying o(x) + ¥ (y) < c(x,y), Yz, y.

c(x,y) 2 (x) +(y)

1) = [eten) > [ o+ [v)an
:/sO(fv)du+/w(y)dV

> sup [J(p,v)]
[}

Therefore,
inf I(m) > sup [J (¢, ¢)]
mell P
K-duality “=” means there is no duality gap. Minimax inequalities.

3.2.1 Quadratic Cost

1 2
c(x,y) = 3 lly — ||

_1 2 1 2
= llzl” + 5llyll” = ()

13



1) = [ ey = [ llalPar + 5 [1llPar - [ (@) dn

1 1
=5 [elPau+ 5 [ wlPdy~ [ (og)ar

1 1
it 1(r) = 3B, el + 3. Iyl sup [ (z.0) dr
We give this a name Wasserstein-2 distance between p and v that

Wi(n.v) = inf 1(r)

Fact. Wa(p,v) is a metric on P(R?) with finite second moment.

By K-duality,

. 1 1
W3Gs) = int 1(0) = Sl + GBI~ s [ (r.) dr
L,V w

= sup U s@du+/w(y)dl/]

. 1 1
sup [ (e.ghdn =gt |5 [ | ol = @) | it 5 [ | 1R = 0tw) | av
—— ——

O(p,v)
f(z) a(y)

Constraints here is
1 o 1 o 1 2
ol@) + () < 3lly — 2l = S llyllP + 3 lall? = ()
f@) +9(y) = (z,y)

su z,y)dr = inf / x)d —|—/ dl/:|
H(ME)/)/< v) f(w)+g(y)2<w,y>,V:c,y[ fa)du 9(v)

Are their such functions satisfy this constraint??? Yes!
Recall that

f@)+ f(y) = (z,y) 20
Now fix f,

in / F)dv, g(y) > (x,y) — f(z), Ve

14



9(y) > sup [(z,y) — f(x)] = f*(v)

it [ gwiv = [ £ @)dv

su x,y)dr )d —|—/ dy]

H(#E)/< ) f(x)+g 2 y),VT,y [/f : 9)
rel U 8 +/ A V]

Fix f*, and we optimize over f.

= inf { [r@ans [ f*(y)du]
sgp/@y =f£1;86[/f du+/f dV]

This trick called double convexification trick.

Therefore,

Ultimate form of W2 distance

53 =5 | [NelPans [iPa| = int | [ s@ans [ 5 ar

3.2.2 Other cost functions

Earth Move Distance: Wasserstein-1 distance

c(z,y) = lly — |

Wi (p,v) = 1nf /||y—$||d7r

What is it dual representation?
K-duality says

= sup
f Lip

[ tin= [ sav

[f (@) = f)] < lz =yl

Lipschitz-1 means

15



Recall There is a metric for weak convergence given by

d(p,v) := sup ‘/fdu—/fdv

fEBL

If we have

lim d(pn,v) =0

n—oo

means that (u,) weakly converges to v.

d(p, v) < Wi(p,v)

W1 gives a stronger topology.
Consider only probability measures that supported on a compact set.
In this case, these topologies are equivalent.

3.2.3 Wasserstein-p Distance

W(uw) = int [ o~y

This is Wasserstein p metric. If p ## 2, there is no convenience reformulation
of K-duality.

pb=00

Ws = iInf esssu —x
o= nf ﬁp(lly 1)

inf{a>0:7(||ly—z||<a)=1}
p =0 This is the total variation.

L, ifx#y

0, otherwise

C(x,y)=1{w#y}={

K-duality still holds and can be reformulated as

—v = inf 7w(z
= vllrv et (z #y)
— s [u(A) - v(A)|
A Borel

Strassen’s Theorem (1950).

Proof. Idea of proof of K-duality
inf I(w) = sup [/ wdu + /wdu]
m ®

16



Consider indicator function of TI(u, v).

My = space of nonnegative measures

o, if mell(p,v)
Fim = {+oo, e My, m¢I(p,v)

Lemma 3.3. Here we have

Proof.

o= s fodut [uan [t + vt

peLY(n), el (v)

Proof. Take ¢ TI(p,v). Assume (z,y) ~ 7, then = ~ p/ # p.
There is some ¢ (bounded cont. ) s.t.

[ o> [viz)an

A [ o)~ [ otajar] >0

Let A\ = oo. Thus, there exists something let

A >0,

F(r) =00

If w € II, we can construct

F(r)=0

Proof. Back to the previous proof

I(r)+ F(m) = ir;f I(m) = sgp [/ edp + /wdu}

17



ilﬁf I(m) = Wier}vf[+ () + F(m)]

:}\% l/cdw—ksup [/god,u—k/wdy—/(goer)de

= inf sup [/wdwr/wdv—/ +U(y )—C(x,y))dﬂ}

_MinMaxz sup l/ wdp + /q/;dy — sup/ () +¥(y) — c(m,y))dw]

= sup {/ godu—i—/wdy}
o, ¥,0(x)+9(y)<c(z,y)

4 Brenier’s Theorem
4.1 Review of duality

pv €RE ¢ RETx RY — [0, 00].

I(m) = /c(x,y)dﬂ

inf  I(m) = sup J(¢,7) =Slép/so(w)du(w) +/w(y)d1/(y)

m€ll(po,p1)

Here, p(z) +1(y) < c(z,y),Vz,y.
c(w,y) = 5lly — =I]?

1
inf I(m)=-W2(u,v
it T(m) = W ,v)

Duality takes form that

s [ o) dn(a) = nf [ [ t@ntan + [ f*(y)u(dy)}

For

W2 ) = s { JGllall? = f@utao + [ (;w - f*(y)> u(dm}

Transformed functions

18



o(x) = g llall? - f(2)

5 ) = Iyl ~ £ (a)

These functions are c-concave functions and its dual. A pair of dual c-
concave.

4.2 Brenier’s Theorem

Theorem 4.1. Let p, v be two probability measures with finite second moments.
Then, 3(f, f*) a pair of cz, lsc function such that

s [ @drte) = [ f@uidn) + [ £ @wiay

(z,y

Theorem 4.2. (Breniers’ 87) Suppose u is absolutely continuous. Then,
1. There is a unique optimal coupling 7 of the Monge-Kantorovich OT prob-
lem given by (X,Vf(X)),X ~ u. Here, Vf is the unique (uniquely de-
termined p almost everywhere) gradient of a convex function f such that

V f pushforwards puto v. This function f also attains the maximum in the
duality (in Thm. 4.1).

2. Vf is the unique solution to the Monge problem

[z = Vi@ Putdz) = min [ llo - 7@ Pudz)
p=v
3. Suppose vis also absolutely continuous. Then, for pa.e. x and va.e. y,

VoV (y) =y, Vi oVfz)=2z

Here, V f* is the unique solution to the OT problem transporting u to v.

Proof. We already know there is an optimal coupling ,
Duality,

[@udn = sw [ @y)ar =t [y + [ @)

I(p,v)

JG@+ 1w~ wan @) =0

Thus, 7* a.e. (x,y), we have
f(@)+ [ (y) = (z,y)

19



Further, we must have y = V(z),Vu a.e. .
Thus,

7t =L (2 YV f(x)), for f that attains maz in duality.
O

This argument is showing that any optimal coupling is given by V f(z), where
f attains duality.

Suppose, you found some f such that V f pushforward uto v.

Can you claim the optimal coupling 7* =L (z, V f(z)).

Benefit of duality.

Define m = Law of (X, V f(z)).

[ @yar= [ (@9 f@) au
:/f(w)du+/f*(y)dv

o [@ayin= [ wyin = [ wdns [ 1@ = [ [o@au+ [ g*du}

Uniqueness in both LHS/RHS.

We have already argues that any optimal 7* must be given by V f, for some
cx, Isc function f.

Suppose (f, f*) and (g, g*) are two pairs of cx, lsc functions that give optimal
couplings.

Proof. Call (f, f*) = *.

/ 2,V f(2)) du(z) = / () dn* = / (9(z) + " (3)) dn*(z,9)

Because 7* = (X, Vf(X)),

/ (2, V f(2)) dp) = / () d* = / (9(2) + " (1)) dn* () = / (9(x)+9" (V£ (2)))du(z)

Thus,

/ (9(2) + ¢"(VF(2) — {2, V(@) )ulde) = 0
Thus,

9(x) + 9" (Vf(z)) — (&, Vf(z)) = 0, pa.e.

20



Thus,

Vf(z) =Vg(z),pae. x.
Uniqueness! O

Solving OT for quadratic cost is equivalent looking for an optimal convex,
Isc function.

Theorem 4.3. Let ¢ be a cz, Isc function, and let ™ be a coupling of p,v s.t.

/ (0(@) + ¢" () — (&, y))dn(z,y) < ¢
Then,

1
I(m) < (irﬁf[) +e= §W22(u,1/) +e.

4.3 Cyclical monotonicity

Suppose we have discrete distributions that

1 & 1 &
M:NZ(SX”V:NZ&%
=1 i=1

{xla'--axN}a {y17"'7yN}

Optimal matching problem. Double stochastic matrices

N
1
. 25 s A 2
Hr&l,r;)/lly*xll dfr—anelg]lvN;:lllwz Yol

Sn is permutation of {1,2,...,N}

Question: Can one characterize the set of permutations where the minimum
is achieved?
WLOG, assume the identity permutation is optimal.

N N
S s — w2 < 3 Il — o P, Vo € S
7 =1

Consider permutation containing a single non-trivil cycle. One non-trivil
cycle, others are identity (single cycle).

(111052 1] [3 3] [4 4] [6 6]

[i1 i3 i3...im] [3 3] [4 4] [6 6]
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Identity elsewhere. To be optimal, we must have

m m
Z ||$ZL - yiLH2 < Z thL - yiL—1||2
=1 =1

Definition 4.4. A Set of points {(x1,91), ..., (xn,yn)} is called cyclically mono-
tone if for all m > 1, and all cycles i1 < iy < i3 < ... < iy, the following
holds.

m m
Z ||x2L - yiLH2 < Z Hle - yiL—1||2
=1

=1

Theorem 4.5. Identity is the optimal permutation if and only if {(x1,y1), -, (Tn,Yn)}
1s cyclically monotone.

Proof. Every permutation can be decomposed as union of disjoint cycles.
If

2

S e = will <> |12 — v,

O

Definition 4.6. A subset I' C R? x R? is called cyclically monotone if for any
collection of {(z1,y1); -, (Tm,¥ym)} C T,

m
ZH%‘ —yill* < ZH% —yia?
=1

Theorem 4.7. Any optimal coupling ©* of MK OT problem, must be con-
centrated (AT C R x R?, cyclically monotone, 7*(T') = 1) on a cyclically
monotone set.

Proof. Want to couple uto v.
We will sample X, ..., Xy ~ i, y1,...,ynv ~ v. Match these optimally.
Have

* *
TN —7?N—ooo T

from support

I'y =T
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4.4 Connect Brenier Theorem to Cyclically monotonicity

If we have pabs. cont., if we have v

7 =L (X, V(X))@ ~ g

I'={(z,Vf(z)),z € R}

Rockafeller’s Theorem.
If T is cyclically monotone, Conversely, any maximumally cyclically mono-
tone subset, must be given by {(z,0f(z)),z € R?}.

5 Lecture 5

5.1 Review Brenier’s Theorem

Example 5.1. R?, and we have u = N(a1,%;), v = N(az, X2). What is the
optimal MK map between them?
Consider the map 7T : R — R,

T(z) = as + Az — ay), A = 5722120, n 1/ 1/2y 712

We can know A is symmetric and PD.
If X ~N(ay,%q), then y = T(z) ~ N(-,-).

Ely] = a2 + E[A(x — a1)] = a2
We know

%, = AN A = 5] V(21 2,/ 2e 2y s R (sl 2, w2 2 2

= 22
How do we know this is a gradient of a convex function?
Define
1
f@) = (a2,2) + 5 {(z = ), Aw = a))
1
= agx + i(x - al)TA(x —ap)

Then

Vi) =as+ Alx —a1) =T(x)

Since f(z), A is PD, we know f(x) is convex.
Then, T'(x) is the optimal map.
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W3 (n,v) = Eul|T(x) = ol = Ellaz + Az — a1) = * = |laz — as|* + tr(>)

Consider

z2=T()—x=as+ Alx —a1) —x ~ N[ag — a1, %]
=ay—Aa; +(A—-1)zx

S, =(A-D)S(A—T)
=%+ 5y — 222, nl )12

WE(u,v) = llaz — ar][2 4+ Tr [ + T3 — 2(2}/25,51/%) /2]
If a; = ag,
W2(u,v) = Tr [21 FY, - 2(2}/2222}/2)1/2}

Bures metric square on PSD matrices.
If 2122 = 2221, then

Wi (u,v) = llax = aal® + T [ (232 = £3/%)?]

If 21 = 22, then

W3 (uv) = llax — as||?

Example 5.2. Let pu ~ Unif(D),D = {(z,y) : 2® + y*> < 1}. Let v ~ Unif(U),U =

{,y):a? 497 = 1),
A natural guess is to do

T
T(x) =+
Edl
How do I verify T is optimal?
Consider
f(@) = |||
x
Vi(x) =7
||

Thus, T is optimal for the quadratic cost.
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Example 5.3. Take unit square, take p- Uniform distribution over [0, 1]2. And
v = discrete uniform over {(0,0), (1,1), (1,0),(0,1)}.

Optimal map for transporting p to v?

Another natural guess is to

T(2) = (1 > 1/2), 1(y > 1/2))

Convex function
flx)=(z=1/2)" + (y —1/2)*

2T = maz(z,0)

Twist,
c(a,y) = —[ly — =[]*

5.2 Optimal transport in 1-dimension

X ~ p,y ~vonR. Find OT from uto v for c(x,y) = ||y — z||*.
Cumulative distribution function (CDF).

Fu(t) = Pz <t)

F), is non-decreasing and

lim F,(t) =0

t——o0

lim F,(t) = 1

t—o0

May not be continuous.
Similarly, we could define F, (t).

Lemma 5.4. Suppose p is abs. cont. Then define U = F,(x). Then, U ~
Unif(0,1).

Definition 5.5. Define inverse CDF that

Fu_l(t) =inf{z: F,(z) > t}
Corollary 5.6. We have

{t < Fu(a)} = {F;'(t) <z}
Proof. Pick 0 <t <1,

P(U > 1) = P, (Fu(2) 2 ) = Pu(e > F, (1) = 1 — ¢
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Lemma 5.7. [Inverse Sampling] Suppose U ~ Unif(0,1). Then, y = F,Y(U).
Then, y ~ v.

Proof. We have

PY <y)=PF,'(U)<y)=PU < F,(y) = F.(y)

X _>Fu U—)F;l Yy

If we have X ~ pu, and

FloF,(z)~v

v

If we take T'(xz) = F, ! o F,,(x). Then, T(z) = Vf(z),3f c.x.

v
T is an increasing function. Thus, define

then f is convex.
In 1-d, increasing function <= derivative of a convex function.
Brenier’s Theorem <= T'(z) is the OT map for quadratic cost.

5.2.1 Natural

Suppose F is strictly increasing. F~! is a well-defined strictly increasing map.
If we take 0 < p < 1,

F~Y(p) = pth quantile
F~1(1/2) = median

F~1(1/2) = 1st quantile

x +— T'(x) Monotone rearrangements (quantile-quantile maps).

Here,

plst quantile, median, pth quantile — v1st quantile, median, pth quantile
In 1-d, quadratic cost is not special.

c(x,y) = h(x —y), h strict cx.

Then, optimal map is monotone rearrangement.

c(z,y) = —h(z —y), h strict concave.

Optimal map is anti-monotone.

F. ' (p)«— F,'(1—p)
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Example 5.8. p= fUnif(0,1) + 3Unif(3,4). v =Unif(3,5).
We could clearly see the monotone transform map as optimal transport map.

T(z) = r+3, if0<zx<1
S lz+1, if3<a<4

5.3 Knothe-Rosenblatt Transport (KR map)

f, g are densities on R%. z = (21,....,24) ~ f, ¥y = (Y1, -, Ya) ~ g-

(@1, ., 2q) = fi(z1) fop (w2|m1) f32,1 (23|22, 21) - - - faja—1,... 1 (xalTa—1, ..., 21)

915 - Ya) = 91(Y1)9211 (Y2|y1)9312,1 (Y3|Y2, ¥1) - - - Gaja—1,....1 (Yalya—1, -+, Y1)

Let T} be the monotone map from f; — g1
z1~ fi

1 =T(x1) ~ g1
ry =21, y1 = T(21) = y1.
Ty|,, monotone map from fo;(+[1) = goj1(-ly1 = T'(21))-

Y2 = T2|ml (33'2)

(y1, yz) ~ 91(?/)92\1(y2|y1)

Inductively, given x1, ..., xx_1 and y1, ..., Yk—_1-
Tk|a:k_1’m7gc1 monotone map fk|k71,...,1('|xk—la ...,.1‘1) — gk\szl,...,l("yk—la ...,yl).
This defines (1, ..., zq) — (Y1, .-+, Ya).- KR-map.

Need to know inverses of all conditional.
KR map is traingular. To generate yi, I only need to know x1, ..., x.

Train neural network to produce an estimate.

L

. The order in which x4, ..., x4 appears matter. d! KR map.

5. No optimality. However,

Consider ¢ (z,y) = Zle Xi(€)(x; — y;)? a weighted quadratic cost.
/\i<€) > 0.
Take f,g, OT w.r.t. e.. Tt

Theorem 5.9. Suppose k=1,2,....d — 1
Ak+1(€)
e—0t /\k(e)
Then, T —2(5) T(KR map).

=0.
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5.4 Dynamical Optimal Transport

p1,p densities on RY.
We have a Brenier map = ~ p, Vi(z) ~ p . ¢ cx Brenier map.

xe = (1 —t)x +tVi(z)

Call this Ty(z) = (1 — t)z + tVi(x).
X ~p,

pr =" xy = p =T, ,p
Definition 5.10. (McCann’s displacement interpolation)

(pr,0<t<1)
is called the displacement interpolation between p and p'.

Example 5.11. p ~ N (0,1), p' ~ N (a, I).
z—=T@)=x4+a
Xe=Q—-tiz+tlzx+a)=x+ta

Xt NN(ta,I) = Pt
Example 5.12. p ~ Unif(0,1)¢, P~ Unif[0,7]%.

pe ~ 0,1 —t 4 tr]?

T(z) = re = V(rlal?)

=(1—t+tr)X

Law of X; = Unif[0,1 —t+tr]? = p;.
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