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1 Introductory notes
Monge 1781.

Suppose µ and ν are two measures on Rd, d ≥ 1.
Consider any function T : Rd → Rd that push forward µ to ν.
Suppose X ∼ µ, then y = T (X) ∼ ν.

Problem 1.1. Monge’s problem. What is the infimum of∫
||T (x)− x||µ(dx) = E[||T (X)−X||]

over the set of all push forwards of µ to ν?

Monge’s idea: move dirt to castle.

V ol(Dirt) = V ol(Castle)

Every x in Dirt should be carried to y. We wish to have minimum work
possible. Two points are ||y − x||.

Summing up all the things,

inf

∫
||T (x)− x||µ(dx)

This is a hard problem.
Consider if we just take µ = δ0, and ν = Ber(1/2).
The set of pushforwards is not nice (not convex, smooth, ...)
How to generalize? Monge is mapping cost as ||T (x) − x|| = cost of trans-

porting.
Why not use ||T (x)− x||2? Why note use ||T (x)− x||40?

Define a cost function c : Rd × Rd → [0,∞]
Generalized Monge Problem (MP):
find

inf

∫
c(x, T (x))µ(dx)

among all pushforwards of µ to ν.
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Kantorovich’s relaxation: without enforcing existence of mapping.

Coupling Given µ and ν, a coupling of (µ, ν) refers to any joint distribution
on Rd × Rd,

such that if (X, y) ∼ ρ, then X ∼ µ, Y ∼ ν.

Example 1.2. Suppose T is a pushforward from µ to ν, then
(X,T (X)) where X ∼ µ is a coupling of (µ, ν).

Example 1.3. Suppose X ∼ µ independent of Y ∼ ν,
then (X,Y ) ∼ µ⊗ ν is a coupling of (µ, ν).

Let π(µ, ν) be the set of couplings, then π(µ, ν) 6= ∅.

Problem 1.4. Kantorovich Problem (KP).
Find

inf
π∈Π(µ,ν)

∫
c(x, y)dπ

E.g.

inf
π∈Π(µ,ν)

∫
||x− y||2π(dxdy)

Advantage

1. π(µ, ν) is a non-empty convex set.

2. The function being optimized is affine.

3. KP is a linear programming problem.

In details:
1. π(µ, ν) is convex. How to verify π ∈ P (Rd×Rd) is an element in Π(µ, ν)?
Take some A ⊆ Rd, sample (X,Y ) ∼ Π,
check:

PΠ(x ∈ A) = µ(A), PΠ(y ∈ A) = ν(A),∀A.
Alternatively, consider f to be a bounded function,

cfx :=

∫
f(x)dµ, cfy :=

∫
f(y)dν

f̄(x, y) := f(x), f(x,y):=f(y)

Check {
EΠ[f̄ ] =

∫
f̄(x, y)dπ = cfx

EΠ[f] =
∫
f(x,y)dπ = cfy

Intersecting P (Rd × Rd).
2. The function is linear in π
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How are MP and KP related?

What is the value of problem?

Is inf = min? Does solution exist?

Is the minimizer unique?

If so, how does the optimizer look like? Will focus mostly on c(x, y) =
||y − x||2.

1.1 When is the infimum achieved?
Weienstrass Theorem.

Theorem 1.5. Suppose the cost function c is continuous, then KP admits a
solution. That is, there is some coupling π∗ ∈ Π(µ, ν) that attains infinum.

Proof. Depends on this basic lemma.

Lemma 1.6. If f is a real-valued continuous function on a compact metric
space X, then ∃ some x∗ ∈ X such that

f(x∗) = min
x∈X

f(x)

Proof. Let l = infx f(x). Assume l > −∞.
For every n ≥ 1, ∃ some xn s.t.

l ≤ f(xn) ≤ l +
1

n

Then sequence (xn, n ≥ 1) has a converging subsequence.

xnk → x∗

What is f(x∗)?

f(x∗) = lim
k→∞

f(xnk) ≤ lim
n→∞

(l +
1

nk
) = l = inf

x
f(x)

Metrics on probability measures. P (Rn)

Definition 1.7. For a sequence (ρk, k ≥ 1) in P (Rn), say limk→ρk = ρ if

lim

∫
fdρk =

∫
fdρ, for all bounded continuous functions f : Rn → R
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“Weak convergence of probability measures” There is a metric that gives
us this weak convergence.

d(ρ0, ρ1) = sup
f∈BL

|
∫
fdρ0 −

∫
fdρ1|

BL is the set of all functions bounded (B) by 1 and is Lipschitz (L). |f(x)| ≤
1, |f(x)− f(y)| ≤ ||x− y||.

Theorem 1.8. For any µ and ν, the set
Π(µ, ν) is compact in the topology of weak convergence.

Proof follows from Prokhonor’s Theorem. We can verify from this theorem
(for stating out what is weak convergence).

Thus, Π(µ, ν) is a compact metric space.
The entire P (Rn) cannot be compact.

ρk = δk, lim
k→∞

∫
f(x)dρk = f(k)

Proof. [Sketch]
Assume µ, ν are compactly supported. It means there exist a big compact

ball in Rd that the entire measures live in this compact ball.
Every element in Π(µ, ν) must be supported in some big enough box [−a, a]2d.
On that box, the continuous cost function c is also bounded.
Thus,

π ∈ Π(µ, ν)→
∫
c(x, y)dπ

is a continuous function.
By Weienstrass, ∃π∗,

inf
π∈Π(µ,ν)

∫
cdπ =

∫
c(x, y)dπ∗.

1.2 Linear Algebra
Suppose

µ =
1

n

n∑
i=1

δxi

ν =
1

n

n∑
j=1

δyj

What is Π(µ, ν)? Given by Doubly-Stochastic matrices (DS matrices).

4



Definition 1.9. An×n = (aij) is DS if

1. aij ≥ 0

2. Row sum = 1

3. Col sum = 1

1
nA ⇐⇒ Π(µ, ν).

P (X = xi, Y = yj).
Special case: Permutation matrices. 1-2, 2-1, 3-3. 0 1 0

1 0 0
0 0 1


(

1

n
Aπ) ⇐⇒ Push Forwards

KP in Linear Algebra.

C = (cij), cij = c(xi, yj)

1

n
〈A,C〉 =

1

n

n∑
i=1

n∑
j=1

aijcij

KP becomes

inf
A over all DS matrices n×n

〈A,C〉

Fact 1.10. This mimimum exists and is achieved at some permutation matrix.

(KP ) = (MP )

µ =
∑

piδxi , ν =
∑

qjδyj

Find Π(µ, ν) is some set of matrices

inf
A
〈C,A〉

is a Linear programming problem.
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2 Convex functions and their duals

2.1 Review
MK OT problem

c(x, y) = ||y − x||2

Given µ, ν on Rd

π(µ, ν)− set of couplings

KP is

inf
π∈Π(µ,ν)

∫
||y − x||2dπ

If this infimum is given by a coupling (X,T (X)), X ∼ µ, T (X) ∼ ν. We say
KP admits a Monge solution.

Example 2.1. µ = N (0, I) on Rd. ν = N (w, I) on Rd. What is the solution
of KP?

The solution is a shift that

T (x) = x+ w

Here, (Z, T (Z)) is the optimal solution to (KP).
How do I argue this? Brenier Theorem.
The reason is T (X) = ∇f(x), f(x) = 1

2 ||x+ w||2 . If you can find a convex
function gradient, this must be the optimal.

If µ has a density (absolutely continuous), no matter what ν is, there always
exists some convex function f , ∇f pushforwards µ to ν.

Weak convergence of measures (ρk, k ≥ 1) seq. in P (Rd)
Say ρk → ρ if ∫

fdρk =

∫
fdρ

For every bounded continuous function f : Rn → R.

Example 2.2. From [0, 1], draw k partitions.

ρk = Unif [
i

k
, i = 1, 2, ..., k]

When k →∞,

ρk → ρ = Unif [0, 1]

Why is this true? Take any f bounded and continuous.
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∫
fdρk =

∑
f(i/k)

1

n
=

1

n

n∑
i=1

f(i/k) =k→∞

∫ 1

0

f(x)dx =

∫
f(x)ρ(dx)

Even X1, ..., Xk ∼iid Unif [0, 1].

1

k

k∑
i=1

δXi →k→∞
a.s. Unif [0, 1]

2.2 Convex Analysis
Definition 2.3. f : Rd → R ∪ {+∞} is called convex if for any x, y ∈ Rd, any
0 < t < 1

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

And strictly convex if

f((1− t)x+ ty) < (1− t)f(x) + tf(y)

Definition 2.4. f is concave if −f is convex.

Definition 2.5. A is a convex set, if x, y ∈ A, then

{(1− t)x+ ty, 0 ≤ t ≤ 1} ⊆ A.

Example 2.6. x ∈ Rd, f(x) = ||x||2 strictly convex.

Example 2.7. If f(x) =
∑
i |xi|. This is convex but not strictly convex.

Example 2.8. f(x) = ||x||pp, p > 1, is strictly convex. If p < 1, concave
function.

Example 2.9. f(x) = log
(∑d

i=1 e
Xi
)
, x ∈ Rd.

Verify this is convex. Show the Hessian.

Convex functions could be infinity somewhere

Example 2.10. f(x) =

{
− log x x > 0

+∞ x ≤ 0

This is also a convex function.

Domain of f = {x ∈ Rd : f(x) < +∞} 6= ∅.
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2.2.1 How convex sets related to convex function

Suppose Ω is a convex set.

Convex indicator function: f(x) =

{
0, x ∈ Ω

+∞, x /∈ Ω

Verify that f is convex function if Ω is convex set.
Conversely, convex functions to convex sets.
Suppose f is a Convex function. Consider the epigraph of f

epi(f) = Ω =
{

(x, t) ∈ Rd+1 : t ≥ f(x)
}

f is convex function if and only if the epigraph is convex set.

Properties

1. Closed under supremum.

{fα, α ∈ I}

fα → R ∪ {∞}

is convex, then so is

f(x) = sup
α
fα(x).

x, y, 0 < t < 1

fα((1− t)x+ ty) ≤ (1− t)fα(x) + tfα(y)

Then

sup
α
fα((1− t)x+ ty) ≤ sup

α
[(1− t)fα(x) + tfα(y)]

2. Convex functions may not be always differentiable, or continuous.

f(x) =


x2, −1 < x < 1

2, x = ±1

∞, |x| > 1
This function is convex but not continuous at the boundary.
It is locally Lipschitz in the interior(dom(f))
It is differentiable almost everywhere inside interior(dom(f)).
It is “double differentiable” a.s.
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We are only going to consider a convex function that are lower semicon-
tinuous

(xk)→ x

lim f(xk) ≥ f(x) ⇐⇒ epi(f) is closed.

3. Every convex lower semicontinuous function can be written in the follow-
ing representation

∃(aα ∈ Rd, bα ∈ R, α ∈ I)

such that

f(x) = sup
α

〈aα, x〉+ bα︸ ︷︷ ︸
affine in x


This is a dual representation of f .

Definition 2.11. Let f : Rd → R̄. Define Legendre transform (convex conju-
gate) of f ,

f∗(y) = sup
x∈Rd

[〈x, y〉 − f(x)]→ convex l.s.c function

Double star?

f∗∗(x) = sup
y∈Rd

[〈x, y〉 − f∗(y)]

f∗∗ = f ⇐⇒ f is convex+ lsc

Otherwise, f∗∗ is called “convex evelope”.

Example 2.12. f(x) = 1
2 ||x||

2.

f∗(x) = sup
x

[
〈x, y〉 − 1

2
||x||2

]
Let g(x) = 〈x, y〉 − 1

2 ||x||
2

∇g(x) = y − x = 0

Therefore,

f∗(x) =
1

2
||y||2 = f(y)

f = f∗ is self-dual.
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Example 2.13. f(x) =

{
− log x, x > 0

+∞, x ≤ 0

f∗(y) =

{
−1− log |y|, y < 0

+∞, y ≥ 0

What if we have a f∗∗? Since f(x) is convex and lsc, we get back f(x).

Example 2.14. Ω = [−1, 1]d, f(x) =

{
0, x ∈ Ω

+∞, x /∈ Ω

f∗(y) = sup
x∈Rd

[〈x, y〉 − f(x)]

= sup
x∈Ω

[〈x, y〉]

= sup
x∈[−1,1]d

d∑
i=1

xiyi

= ||y||1

f∗∗(x) = sup
y∈Rd

[〈x, y〉 − f∗(y)]

= sup
y∈Rd

[〈x, y〉 − ||y||1]

=

{
+∞, if x /∈ Ω

0, if x ∈ Ω

Interestingly, if Ω = (−1, 1)d, f∗∗(x) = [−1, 1]d.

Theorem 2.15. Suppose f and f∗ are convex and differentiable over Rd. (Dif-
ferentiable implies lsc).

1. f(x) + f∗(y) ≥ 〈x, y〉 for all x, y ∈ Rd, with = holds if and only if y =
∇f(x).

2. ∇f : Rd → Rd, ∇f∗ : Rd → Rd are inverse of one another.

∇f(∇f∗(y)) = y

∇f∗(∇f(x)) = x

Proof. Idea of the proof.
(1)
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f∗(y) = sup
x

[〈x, y〉 − f(x)] ≥ 〈x, y〉 − f(x)

f(x) + f∗(y) ≥ 〈x, y〉

Where the supremum is achieved?
FO condition:

y = ∇f(x)

f∗(y) = 〈x, y〉 − f(x), y = ∇f(x).

(2) ∇f and ∇f∗ are inverse of each other. Very interesting fact.
Start from (1). Replace f by f∗, and f∗ by f∗∗ = f .

f(x) = sup
y

[〈x, y〉 − f∗(y)] ,maximized when x = ∇f∗(y).

f(x) = 〈x.y〉 − f∗(y), x = ∇f∗(y)

From (1), 〈x,∇f(x)〉 − f∗(∇f(x)) = f(x).

2.3 Weak Convergence distances
BL denotes bounded Lipschitz that ||f ||∞ ≤ 1, Lip− 1.

sup
f∈BL

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣
Consider

W 2
2 (µ, ν) = inf

Π(µ,ν)

∫
||y − x||2dπ = dual representation

Then we can see Brenier’s Theorem.

∇f : µ→ ν

∇f∗ : ν → µ

3 Kantorovich Duality

3.1 Review of Convex functions
f : Rd → R ∪ {∞}, convex and lower semicontinuous.

We can define dual/conjugate with

f∗(y) = sup
x∈Rd

[〈x, y〉 − f(x)]
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1. ∀x, y, f(x) + f∗(y)− 〈x, y〉 ≥ 0,= 0 iff y = ∇f(x) or x = ∇f∗(y).

2. ∇f(∇f∗(x)) = x

Example 3.1. d = 1. f(x) =

{
x log x, x ≥ 0

∞, x < 0
. cx lsc.

Check convexity,

f ′(x) = 1 + log x

Check lsc.

lim
x→0

x log x = 0

Let y = 1 + log x, x = ey−1.

(f∗)′(y) = ey−1

f∗(y) = sup
x

[xy − x log x] = sup
x≥0

[xy − x log x] = ey−1

Domain of f∗ is R and Domain(f) = [0,∞).
Another observation
Take f cx and lsc

inf
x∈Rd

f(x) = − sup
x∈Rd

[−f(x)]

= − sup
x

[〈x, 0〉 − f(x)]

= −f∗(0)

The infimum is attained via checking the dual at 0.
Let x∗ is the unique minimizer,

∇f(x∗) = 0, x∗ = ∇f∗(0)

x∗ = ∇f∗(0)

3.2 Kantorovich Duality
Very similar to 3.1, but in infinity dimension.

Consider the optimal transport problem with a continuous cost c : Rd×Rd →
[0,∞].

For π ∈ Π(µ, ν),

I(π) =

∫
c(x, y)dπ
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cost of transport using the plan π.
We wish to find out

inf
π∈Π

I(π)

This is doing in the space of functions/measures.
For any function ϕ ∈ L1(µ) and ψ ∈ L1(ν). L1 means that the integral is

finite.
In this case,

∫
|ϕ|dµ <∞.

Define
J(ϕ,ψ) =

∫
ϕ(x)dµ+

∫
ψ(y)dν

Let Φ = {ϕ,ψ such that ϕ(x) + ψ(y) ≤ c(x, y),∀x, y}.

Theorem 3.2. (Kantorovich Duality)

inf
π∈Π(µ,ν)

I(π) = sup
Φ
J(ϕ,ψ).

The supremum above does not change if we restrict ϕ,ψ to be bounded con-
tinuous functions.

One side is obvious.
Suppose π ∈ Π(µ, ν). Take any ϕ,ψ satisfying ϕ(x) + ψ(y) ≤ c(x, y),∀x, y.

c(x, y) ≥ ϕ(x) + ψ(y)

I(π) =

∫
c(x, y) ≥

∫
ϕ(x)dπ +

∫
ψ(y)dπ

=

∫
ϕ(x)dµ+

∫
ψ(y)dν

≥ sup
Φ

[J(ϕ,ψ)]

Therefore,

inf
π∈Π

I(π) ≥ sup
Φ

[J(ϕ,ψ)]

K-duality “=” means there is no duality gap. Minimax inequalities.

3.2.1 Quadratic Cost

c(x, y) =
1

2
||y − x||2

=
1

x
||x||2 +

1

2
||y||2 − 〈x, y〉
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I(π) =

∫
c(x, y)dπ =

1

2

∫
||x||2dπ +

1

2

∫
||y||2dπ −

∫
〈x, y〉 dπ

=
1

2

∫
||x||2dµ+

1

2

∫
||y||2dν −

∫
〈x, y〉 dπ

inf
Π(µ,ν)

I(π) =
1

2
Eµ||x||2 +

1

2
Eν ||y||2 − sup

π

∫
〈x, y〉 dπ

We give this a name Wasserstein-2 distance between µ and ν that

W 2
2 (µ, ν) = inf

Π(µ,ν)
I(π)

Fact. W2(µ, ν) is a metric on P (Rd) with finite second moment.

By K-duality,

W 2
2 (µ, ν) = inf

Π(µ,ν)
I(π) =

1

2
Eµ||x||2 +

1

2
Eν ||y||2 − sup

Π(µ,ν)

∫
〈x, y〉 dπ

= sup
Φ

[∫
ϕdµ+

∫
ψ(y)dν

]

sup
Π(µ,ν)

∫
〈x, y〉 dπ = inf

Φ

1

2

∫ ||x||2 − ϕ(x)︸ ︷︷ ︸
f(x)

 dµ+
1

2

∫ ||y||2 − ψ(y)︸ ︷︷ ︸
g(y)

 dν


Constraints here is

ϕ(x) + ψ(y) ≤ 1

2
||y − x||2 =

1

2
||y||2 +

1

2
||x||2 − 〈x, y〉

f(x) + g(y) ≥ 〈x, y〉

sup
Π(µ,ν)

∫
〈x, y〉 dπ = inf

f(x)+g(y)≥〈x,y〉,∀x,y

[∫
f(x)dµ+

∫
g(y)dν

]
Are their such functions satisfy this constraint??? Yes!
Recall that

f(x) + f∗(y)− 〈x, y〉 ≥ 0

Now fix f ,

inf

∫
f(y)dν, g(y) ≥ 〈x, y〉 − f(x),∀x
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g(y) ≥ sup
x

[〈x, y〉 − f(x)] = f∗(y)

Therefore,

inf

∫
g(y)dν =

∫
f∗(y)dν

sup
Π(µ,ν)

∫
〈x, y〉 dπ = inf

f(x)+g(y)≥〈x,y〉,∀x,y

[∫
f(x)dµ+

∫
g(y)dν

]
= inf
f∈L1(µ)

[∫
f(x)dµ+

∫
f∗(y)dν

]
Fix f∗, and we optimize over f .

= inf
f

[∫
f∗∗(x)dµ+

∫
f∗(y)dν

]
sup
π

∫
〈x, y〉 dπ = inf

f cx,lsc

[∫
f(x)dµ+

∫
f∗(y)dν

]
This trick called double convexification trick.

Ultimate form of W2 distance

1

2
W 2

2 (µ, ν) =
1

2

[∫
||x||2dµ+

∫
||y||2dν

]
− inf
f cx lsc.

[∫
f(x)dµ+

∫
f∗(y)dν

]
3.2.2 Other cost functions

Earth Move Distance: Wasserstein-1 distance

c(x, y) = ||y − x||

W1(µ, ν) = inf
Π(µ,ν)

∫
||y − x||dπ

What is it dual representation?
K-duality says

= sup
f Lip

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣
Lipschitz-1 means

|f(x)− f(y)| ≤ ||x− y||
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Recall There is a metric for weak convergence given by

d(µ, ν) := sup
f∈BL

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣
If we have

lim
n→∞

d(µn, ν) = 0

means that (µn) weakly converges to ν.

d(µ, ν) ≤W1(µ, ν)

W1 gives a stronger topology.
Consider only probability measures that supported on a compact set.
In this case, these topologies are equivalent.

3.2.3 Wasserstein-p Distance

Wp(µ, ν) = inf
Π(µ,ν)

∫
||x− y||pdπ

This is Wasserstein p metric. If p 6= 2, there is no convenience reformulation
of K-duality.

p =∞
W∞ = inf

Π(µ,ν)
ess sup

π
(||y − x||)︸ ︷︷ ︸

inf{a>0:π(||y−x||≤a)=1}

p = 0 This is the total variation.

c(x, y) = 1 {x 6= y} =

{
1, if x 6= y

0, otherwise

K-duality still holds and can be reformulated as

||µ− ν||TV = inf
π∈Π(µ,ν)

π(x 6= y)

= sup
A Borel

|µ(A)− ν(A)|

Strassen’s Theorem (1950).

Proof. Idea of proof of K-duality

inf
π
I(π) = sup

Φ

[∫
ϕdµ+

∫
ψdν

]
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Consider indicator function of Π(µ, ν).

M+ = space of nonnegative measures

F (π) =

{
0, if π ∈ Π(µ, ν)

+∞, π ∈M+, π /∈ Π(µ, ν)

Lemma 3.3. Here we have

Proof.

F (π) = sup
ϕ∈L1(µ),ψ∈L1(ν)

[∫
ϕdµ+

∫
ψdν −

∫
(ϕ(x) + ψ(y))dπ

]

Proof. Take π /∈ Π(µ, ν). Assume (x, y) ∼ π, then x ∼ µ′ 6= µ.
There is some ϕ (bounded cont. ) s.t.∫

ϕ(x)dµ >

∫
ψ(x)dπ

λ > 0,

λ[

∫
ϕ(x)dµ−

∫
ϕ(x)dπ] > 0

Let λ→∞. Thus, there exists something let

F (π) =∞

If π ∈ Π, we can construct

F (π) = 0

Proof. Back to the previous proof

I(π) + F (π) = inf
π
I(π) = sup

Φ

[∫
ϕdµ+

∫
ψdν

]
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inf
Π
I(π) = inf

π∈M+

[I(π) + F (π)]

= inf
M+

[∫
cdπ + sup

ϕ,ψ

[∫
ϕdµ+

∫
ψdν −

∫
(ϕ+ ψ)dπ

]]

= inf
M+

sup
ϕ,ψ

[∫
ϕdµ+

∫
ψdν −

∫
(ϕ(x) + ψ(y)− c(x, y))dπ

]
=MinMax sup

ϕ,ψ

[∫
ϕdµ+

∫
ψdν − sup

M+

∫
(ϕ(x) + ψ(y)− c(x, y))dπ

]

= sup
ϕ,ψ,ϕ(x)+ψ(y)≤c(x,y)

[∫
ϕdµ+

∫
ψdν

]

4 Brenier’s Theorem

4.1 Review of duality
µ, ν ∈ Rd, c : Rd × Rd → [0,∞].

I(π) =

∫
c(x, y)dπ

inf
π∈Π(ρ0,ρ1)

I(π) = sup
Φ
J(φ, ψ) = sup

Φ

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y)

Here, ϕ(x) + ψ(y) ≤ c(x, y),∀x, y.
c(x, y) = 1

2 ||y − x||
2

inf
Π(µ,ν)

I(π) =
1

2
W 2

2 (µ, ν)

Duality takes form that

sup
π

∫
〈x, y〉 dπ(x, y) = inf

cx,lsc

[∫
f(x)µ(dx) +

∫
f∗(y)ν(dy)

]
For

1

2
W 2
w(µ, ν) = sup

cx,lsc

[∫
(
1

2
||x||2 − f(x))µ(dx) +

∫ (
1

2
||y||2 − f∗(y)

)
ν(dy)

]
Transformed functions
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φ(x) =
1

2
||x||2 − f(x)

φ∗(y) =
1

2
||y||2 − f∗(x)

These functions are c-concave functions and its dual. A pair of dual c-
concave.

4.2 Brenier’s Theorem
Theorem 4.1. Let µ, ν be two probability measures with finite second moments.
Then, ∃(f, f∗) a pair of cx, lsc function such that

sup
Π(x,y)

∫
〈x, y〉 dπ(x, y) =

∫
f(x)µ(dx) +

∫
f∗(x)ν(dy)

Theorem 4.2. (Breniers’ 87) Suppose µ is absolutely continuous. Then,

1. There is a unique optimal coupling π of the Monge-Kantorovich OT prob-
lem given by (X,∇f(X)), X ∼ µ. Here, ∇f is the unique (uniquely de-
termined µ almost everywhere) gradient of a convex function f such that
∇f pushforwards µto ν. This function f also attains the maximum in the
duality (in Thm. 4.1).

2. ∇f is the unique solution to the Monge problem∫
||x−∇f(x)||2µ(dx) = min

T#µ=ν

∫
||x− T (x)||2µ(dx)

3. Suppose νis also absolutely continuous. Then, for µa.e. x and νa.e. y,

∇f ◦ ∇f∗(y) = y,∇f∗ ◦ ∇f(x) = x

Here, ∇f∗ is the unique solution to the OT problem transporting µ to ν.

Proof. We already know there is an optimal coupling π,
Duality,

∫
〈x, y〉 dπ∗ = sup

Π(µ,ν)

∫
〈x, y〉 dπ =duality

∫
f(x)µ(dx) +

∫
f∗(y)ν(dy)

∫
(f(x) + f∗(y)− 〈x, y〉)dπ∗(x, y) = 0

Thus, π∗ a.e. (x, y), we have

f(x) + f∗(y) = 〈x, y〉
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Further, we must have y = ∇(x),∀µ a.e. x.
Thus,

π∗ =Law (x,∇f(x)) , for f that attains max in duality.

This argument is showing that any optimal coupling is given by ∇f(x), where
f attains duality.

Suppose, you found some f such that ∇f pushforward µto ν.
Can you claim the optimal coupling π∗ =Law (x,∇f(x)).
Benefit of duality.
Define π = Law of (X,∇f(x)).

∫
〈x, y〉 dπ =

∫
〈x,∇f(x)〉 dµ

=

∫
f(x)dµ+

∫
f∗(y)dν

sup
Π(µ,ν)

∫
〈x, y〉 dπ =

∫
〈x, y〉 dπ =

∫
f(x)dµ+

∫
f∗(y)dν = inf

[∫
g(x)dµ+

∫
g∗dν

]
Uniqueness in both LHS/RHS.
We have already argues that any optimal π∗ must be given by ∇f , for some

cx, lsc function f .
Suppose (f, f∗) and (g, g∗) are two pairs of cx, lsc functions that give optimal

couplings.

Proof. Call (f, f∗) = π∗.

∫
〈x,∇f(x)〉 dµ(x) =

∫
〈x, y〉 dπ∗ =

∫
(g(x) + g∗(y)) dπ∗(x, y)

Because π∗ = (X,∇f(X)),

∫
〈x,∇f(x)〉 dµ(x) =

∫
〈x, y〉 dπ∗ =

∫
(g(x) + g∗(y)) dπ∗(x, y) =

∫
(g(x)+g∗(∇f(x)))dµ(x)

Thus, ∫
(g(x) + g∗(∇f(x))− 〈x,∇f(x)〉)µ(dx) = 0

Thus,

g(x) + g∗(∇f(x))− 〈x,∇f(x)〉 = 0, µ a.e.
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Thus,

∇f(x) = ∇g(x), µ a.e. x.

Uniqueness!

Solving OT for quadratic cost is equivalent looking for an optimal convex,
lsc function.

Theorem 4.3. Let ϕ be a cx, lsc function, and let π be a coupling of µ, ν s.t.∫
(ϕ(x) + ϕ∗(y)− 〈x, y〉)dπ(x, y) ≤ ε

Then,

I(π) ≤
(

inf
Π
I
)

+ ε =
1

2
W 2

2 (µ, ν) + ε.

4.3 Cyclical monotonicity
Suppose we have discrete distributions that

µ =
1

N

N∑
i=1

δXi , ν =
1

N

N∑
i=1

δyj

{x1, ..., xN} , {y1, ..., yN}

Optimal matching problem. Double stochastic matrices

min
Π(µ,ν)

∫
||y − x||2dπ = min

σ∈SN

1

N

N∑
i=1

||xi − yσi ||2

SN is permutation of {1, 2, ..., N}

Question: Can one characterize the set of permutations where the minimum
is achieved?

WLOG, assume the identity permutation is optimal.

N∑
i

||xi − yi||2 ≤
N∑
i=1

||xi − yσi ||2,∀σ ∈ SN .

Consider permutation containing a single non-trivil cycle. One non-trivil
cycle, others are identity (single cycle).

[11 10 5 2 1] [3 3] [4 4] [6 6]

[i1 i2 i3...im] [3 3] [4 4] [6 6]
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Identity elsewhere. To be optimal, we must have

m∑
l=1

||xiL − yiL ||2 ≤
m∑
l=1

||xiL − yiL−1
||2

Definition 4.4. A Set of points {(x1, y1), ..., (xN , yN )} is called cyclically mono-
tone if for all m ≥ 1, and all cycles i1 ← i2 ← i3 ← ... ← im, the following
holds.

m∑
l=1

||xiL − yiL ||2 ≤
m∑
l=1

||xiL − yiL−1
||2

Theorem 4.5. Identity is the optimal permutation if and only if {(x1, y1), ..., (xn, yn)}
is cyclically monotone.

Proof. Every permutation can be decomposed as union of disjoint cycles.
If ∑

||xi − yi|| ≤
∑
||xi − yσi ||2

Definition 4.6. A subset Γ ⊆ Rd × Rd is called cyclically monotone if for any
collection of {(x1, y1), ..., (xm, ym)} ⊆ Γ,

∑
||xi − yi||2 ≤

m∑
i=1

||xi − yi−1||2

Theorem 4.7. Any optimal coupling π∗ of MK OT problem, must be con-
centrated (∃Γ ⊆ Rd × Rd, cyclically monotone, π∗(Γ) = 1) on a cyclically
monotone set.

Proof. Want to couple µto ν.
We will sample X1, ..., XN ∼ µ, y1, ..., yN ∼ ν. Match these optimally.
Have

π∗N →N→∞ π∗

from support

ΓN → Γ
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4.4 Connect Brenier Theorem to Cyclically monotonicity
If we have µabs. cont., if we have ν

π∗ =Law (X,∇f(X)), x ∼ µ

Γ =
{

(x,∇f(x)) , x ∈ Rd
}

Rockafeller’s Theorem.
If Γ is cyclically monotone, Conversely, any maximumally cyclically mono-

tone subset, must be given by
{

(x, ∂f(x)) , x ∈ Rd
}
.

5 Lecture 5

5.1 Review Brenier’s Theorem
Example 5.1. Rd, and we have µ = N (a1,Σ1), ν = N (a2,Σ2). What is the
optimal MK map between them?

Consider the map T : Rd → Rd,

T (x) = a2 +A(x− a1), A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1

We can know A is symmetric and PD.
If X ∼ N (a1,Σ1), then y = T (x) ∼ N (·, ·).

E[y] = a2 + E[A(x− a1)] = a2

We know

Σy = AΣ1A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 Σ1Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1

= Σ2

How do we know this is a gradient of a convex function?
Define

f(x) = 〈a2, x〉+
1

2
〈(x− a1), A(x− a1)〉

= aT2 x+
1

2
(x− a1)TA(x− a1)

Then

∇f(x) = a2 +A(x− a1) = T (x)

Since f(x), A is PD, we know f(x) is convex.
Then, T (x) is the optimal map.
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W 2
2 (µ, ν) = Eµ||T (x)− x||2 = E||a2 +A(x− a1)− x||2 = ||a2 − a1||2 + tr(Σz)

Consider

z = T (x)− x = a2 +A(x− a1)− x ∼ N [a2 − a1,Σz]

= a2 −Aa1 + (A− I)x

Σz = (A− I)Σ1(A− I)

= Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2

W 2
2 (µ, ν) = ||a2 − a1||2 + Tr

[
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

]
If a1 = a2,

W 2
2 (µ, ν) = Tr

[
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

]
Bures metric square on PSD matrices.
If Σ1Σ2 = Σ2Σ1, then

W 2
2 (µ, ν) = ||a1 − a2||2 + Tr

[
(Σ

1/2
1 − Σ

1/2
1 )2

]
If Σ1 = Σ2, then

W 2
2 (µ, ν) = ||a1 − a2||2

Example 5.2. Let µ ∼ Unif(D), D =
{

(x, y) : x2 + y2 ≤ 1
}
. Let ν ∼ Unif(U), U ={

(x, y) : x2 + y2 = 1
}
.

A natural guess is to do

T (x) =
x

||x||
How do I verify T is optimal?
Consider

f(x) = ||x||

∇f(x) =
x

||x||
Thus, T is optimal for the quadratic cost.
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Example 5.3. Take unit square, take µ- Uniform distribution over [0, 1]2. And
ν = discrete uniform over {(0, 0), (1, 1), (1, 0), (0, 1)}.

Optimal map for transporting µ to ν?
Another natural guess is to

T (x) = (1(x > 1/2), 1(y > 1/2))

Convex function

f(x) = (x− 1/2)+ + (y − 1/2)+

z+ = max(z, 0)

Twist,

c(x, y) = −||y − x||2

5.2 Optimal transport in 1-dimension
X ∼ µ, y ∼ ν on R. Find OT from µto ν for c(x, y) = ||y − x||2.

Cumulative distribution function (CDF).

Fµ(t) = P (x ≤ t)

Fµ is non-decreasing and

lim
t→−∞

Fµ(t) = 0

lim
t→∞

Fµ(t) = 1

May not be continuous.
Similarly, we could define Fν(t).

Lemma 5.4. Suppose µ is abs. cont. Then define U = Fµ(x). Then, U ∼
Unif(0, 1).

Definition 5.5. Define inverse CDF that

F−1
µ (t) = inf {x : Fµ(x) ≥ t}

Corollary 5.6. We have

{t ≤ Fµ(x)} =
{
F−1
µ (t) ≤ x

}
Proof. Pick 0 ≤ t ≤ 1,

P (U ≥ t) = Pµ (Fµ(x) ≥ t) = Pµ(x ≥ F−1
µ (t)) = 1− t
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Lemma 5.7. [Inverse Sampling] Suppose U ∼ Unif(0, 1). Then, y = F−1
ν (U).

Then, y ∼ ν.

Proof. We have

P (Y ≤ y) = P (F−1
ν (U) ≤ y) = P (U ≤ Fν(y)) = Fν(y)

X →Fµ U →F−1
ν

y

If we have X ∼ µ, and

F−1
ν ◦ Fν(x) ∼ ν

If we take T (x) = F−1
ν ◦ Fµ(x). Then, T (x) = ∇f(x),∃f c.x.

T is an increasing function. Thus, define

f(x) =

∫ x

0

T (y)dy

then f is convex.
In 1-d, increasing function ⇐⇒ derivative of a convex function.
Brenier’s Theorem ⇐⇒ T (x) is the OT map for quadratic cost.

5.2.1 Natural

Suppose F is strictly increasing. F−1 is a well-defined strictly increasing map.
If we take 0 < p < 1,

F−1(p) = pth quantile

F−1(1/2) = median

F−1(1/2) = 1st quantile

x 7→ T (x) Monotone rearrangements (quantile-quantile maps).
Here,
µ1st quantile, median, pth quantile 7→ ν1st quantile, median, pth quantile
In 1-d, quadratic cost is not special.

c(x, y) = h(x− y), h strict cx.

Then, optimal map is monotone rearrangement.

c(x, y) = −h(x− y), h strict concave.

Optimal map is anti-monotone.

F−1
µ (p)←→ F−1

ν (1− p)
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Example 5.8. µ = 1
2Unif(0, 1) + 1

2Unif(3, 4). ν = Unif(3, 5).
We could clearly see the monotone transform map as optimal transport map.

T (x) =

{
x+ 3, if 0 ≤ x ≤ 1

x+ 1, if 3 ≤ x ≤ 4

5.3 Knothe-Rosenblatt Transport (KR map)
f, g are densities on Rd. x = (x1, ..., xd) ∼ f , y = (y1, ..., yd) ∼ g.

f(x1, ..., xd) = f1(x1)f2|1(x2|x1)f3|2,1(x3|x2, x1) . . . fd|d−1,...,1(xd|xd−1, ..., x1)

g(y1, ..., yd) = g1(y1)g2|1(y2|y1)g3|2,1(y3|y2, y1) . . . gd|d−1,...,1(yd|yd−1, ..., y1)

Let T1 be the monotone map from f1 → g1

x1 ∼ f1

y1 = T (x1) ∼ g1

x1 = x1, y1 = T (x1) = y1.
T2|x1

monotone map from f2|1(·|x1)→ g2|1(·|y1 = T (x1)).

y2 = T2|x1
(x2)

(y1, y2) ∼ g1(y)g2|1(y2|y1)

Inductively, given x1, ..., xk−1 and y1, ..., yk−1.
Tk|xk−1,...,x1

monotone map fk|k−1,...,1(·|xk−1, ..., x1)→ gk|k−1,...,1(·|yk−1, ..., y1).
This defines (x1, ..., xd) 7→ (y1, ..., yd). KR-map.

1. Need to know inverses of all conditional.

2. KR map is traingular. To generate yk, I only need to know x1, ..., xk.

3. Train neural network to produce an estimate.

4. The order in which x1, ..., xd appears matter. d! KR map.

5. No optimality. However,

Consider cε(x, y) =
∑d
i=1 λi(ε)(xi − yi)2 a weighted quadratic cost.

λi(ε) > 0.
Take f, g, OT w.r.t. eε. Tε

Theorem 5.9. Suppose k = 1, 2, ..., d− 1

lim
ε→0+

λk+1(ε)

λk(ε)
= 0.

Then, Tε →L2(f) T (KR map).
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5.4 Dynamical Optimal Transport
ρ1, ρ

′
densities on Rd.

We have a Brenier map x ∼ ρ, ∇ψ(x) ∼ ρ′ . ψ cx Brenier map.

xt = (1− t)x+ t∇ψ(x)

Call this Tt(x) = (1− t)x+ t∇ψ(x).
X ∼ ρ,

ρt =Law xt ⇐⇒ ρt = Tt#ρ

Definition 5.10. (McCann’s displacement interpolation)

(ρt, 0 ≤ t ≤ 1)

is called the displacement interpolation between ρ and ρ
′
.

Example 5.11. ρ ∼ N (0, I), ρ
′ ∼ N (a, I).

x 7→ T (x) = x+ a

Xt = (1− t)x+ t(x+ a) = x+ ta

Xt ∼ N (ta, I) = ρt

Example 5.12. ρ ∼ Unif(0, 1)d, ρ
′ ∼ Unif [0, r]d.

ρt ∼ [0, 1− t+ tr]d

T (x) = rx = ∇(
1

2
r||x||2)

Xt = (1− t)X + trX

= (1− t+ tr)X

Law of Xt = Unif [0, 1− t+ tr]d = ρt.

28


