Optimal Transport and Machine Learning

November 19, 2021

1 Introductory notes

Monge 1781.
Suppose μ and ν are two measures on $\mathbb{R}^{d}, d \geq 1$.
Consider any function $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ that push forward μ to ν.
Suppose $X \sim \mu$, then $y=T(X) \sim \nu$.
Problem 1.1. Monge's problem. What is the infimum of

$$
\int\|T(x)-x\| \mu(d x)=\mathbb{E}[\|T(X)-X\|]
$$

over the set of all push forwards of μ to ν ?
Monge's idea: move dirt to castle.

$$
\operatorname{Vol}(\operatorname{Dirt})=\operatorname{Vol}(\text { Castle })
$$

Every x in Dirt should be carried to y. We wish to have minimum work possible. Two points are $\|y-x\|$.

Summing up all the things,

$$
\inf \int\|T(x)-x\| \mu(d x)
$$

This is a hard problem.
Consider if we just take $\mu=\delta_{0}$, and $\nu=\operatorname{Ber}(1 / 2)$.
The set of pushforwards is not nice (not convex, smooth, ...)
How to generalize? Monge is mapping cost as $\|T(x)-x\|=$ cost of transporting.

Why not use $\|T(x)-x\|^{2}$? Why note use $\|T(x)-x\|^{40}$?
Define a cost function $c: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty]$
Generalized Monge Problem (MP):
find

$$
\inf \int c(x, T(x)) \mu(d x)
$$

among all pushforwards of μ to ν.

Kantorovich's relaxation: without enforcing existence of mapping.

Coupling Given μ and ν, a coupling of (μ, ν) refers to any joint distribution on $\mathbb{R}^{d} \times \mathbb{R}^{d}$,
such that if $(X, y) \sim \rho$, then $X \sim \mu, Y \sim \nu$.
Example 1.2. Suppose T is a pushforward from μ to ν, then $(X, T(X))$ where $X \sim \mu$ is a coupling of (μ, ν).

Example 1.3. Suppose $X \sim \mu$ independent of $Y \sim \nu$, then $(X, Y) \sim \mu \otimes \nu$ is a coupling of (μ, ν).
Let $\pi(\mu, \nu)$ be the set of couplings, then $\pi(\mu, \nu) \neq \emptyset$.
Problem 1.4. Kantorovich Problem (KP).
Find

$$
\inf _{\pi \in \Pi(\mu, \nu)} \int c(x, y) d \pi
$$

E.g.

$$
\inf _{\pi \in \Pi(\mu, \nu)} \int\|x-y\|^{2} \pi(d x d y)
$$

Advantage

1. $\pi(\mu, \nu)$ is a non-empty convex set.
2. The function being optimized is affine.
3. KP is a linear programming problem.

In details:

1. $\pi(\mu, \nu)$ is convex. How to verify $\pi \in P\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ is an element in $\Pi(\mu, \nu)$? Take some $A \subseteq \mathbb{R}^{d}$, sample $(X, Y) \sim \Pi$, check:

$$
P_{\Pi}(x \in A)=\mu(A), P_{\Pi}(y \in A)=\nu(A), \forall A
$$

Alternatively, consider f to be a bounded function,

$$
\begin{gathered}
c_{x}^{f}:=\int f(x) d \mu, \quad c_{y}^{f}:=\int f(y) d \nu \\
\bar{f}(x, y):=f(x), \quad \underline{\mathrm{f}}(\mathrm{x}, \mathrm{y}):=\mathrm{f}(\mathrm{y})
\end{gathered}
$$

Check

$$
\left\{\begin{array}{l}
\mathbb{E}_{\Pi}[\bar{f}]=\int \bar{f}(x, y) d \pi=c_{x}^{f} \\
\mathbb{E}_{\Pi}[\underline{\mathrm{f}}]=\int \underline{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \mathrm{d} \pi=c_{y}^{f}
\end{array}\right.
$$

Intersecting $P\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.
2. The function is linear in π

How are MP and KP related?

What is the value of problem?

Is $\inf =\min ?$ Does solution exist?

Is the minimizer unique?

If so, how does the optimizer look like? Will focus mostly on $c(x, y)=$ $\|y-x\|^{2}$.

1.1 When is the infimum achieved?

Weienstrass Theorem.
Theorem 1.5. Suppose the cost function c is continuous, then KP admits a solution. That is, there is some coupling $\pi^{*} \in \Pi(\mu, \nu)$ that attains infinum.

Proof. Depends on this basic lemma.
Lemma 1.6. If f is a real-valued continuous function on a compact metric space X, then \exists some $x^{*} \in X$ such that

$$
f\left(x^{*}\right)=\min _{x \in X} f(x)
$$

Proof. Let $l=\inf _{x} f(x)$. Assume $l>-\infty$.
For every $n \geq 1, \exists$ some x_{n} s.t.

$$
l \leq f\left(x_{n}\right) \leq l+\frac{1}{n}
$$

Then sequence $\left(x_{n}, n \geq 1\right)$ has a converging subsequence.

$$
x_{n_{k}} \rightarrow x^{*}
$$

What is $f\left(x^{*}\right)$?

$$
f\left(x^{*}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right) \leq \lim _{n \rightarrow \infty}\left(l+\frac{1}{n_{k}}\right)=l=\inf _{x} f(x)
$$

Metrics on probability measures. $P\left(\mathbb{R}^{n}\right)$
Definition 1.7. For a sequence $\left(\rho_{k}, k \geq 1\right)$ in $P\left(\mathbb{R}^{n}\right)$, say $\lim _{k \rightarrow \rho_{k}}=\rho$ if

$$
\lim \int f d \rho_{k}=\int f d \rho, \text { for all bounded continuous functions } f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

"Weak convergence of probability measures" There is a metric that gives us this weak convergence.

$$
d\left(\rho_{0}, \rho_{1}\right)=\sup _{f \in B L}\left|\int f d \rho_{0}-\int f d \rho_{1}\right|
$$

BL is the set of all functions bounded (B) by 1 and is Lipschitz (L). $|f(x)| \leq$ $1,|f(x)-f(y)| \leq\|x-y\|$.

Theorem 1.8. For any μ and ν, the set
$\Pi(\mu, \nu)$ is compact in the topology of weak convergence.
Proof follows from Prokhonor's Theorem. We can verify from this theorem (for stating out what is weak convergence).

Thus, $\Pi(\mu, \nu)$ is a compact metric space.
The entire $P\left(\mathbb{R}^{n}\right)$ cannot be compact.

$$
\rho_{k}=\delta_{k}, \lim _{k \rightarrow \infty} \int f(x) d \rho_{k}=f(k)
$$

Proof. [Sketch]
Assume μ, ν are compactly supported. It means there exist a big compact ball in \mathbb{R}^{d} that the entire measures live in this compact ball.

Every element in $\Pi(\mu, \nu)$ must be supported in some big enough box $[-a, a]^{2 d}$. On that box, the continuous cost function c is also bounded.
Thus,

$$
\pi \in \Pi(\mu, \nu) \rightarrow \int c(x, y) d \pi
$$

is a continuous function.
By Weienstrass, $\exists \pi^{*}$,

$$
\inf _{\pi \in \Pi(\mu, \nu)} \int c d \pi=\int c(x, y) d \pi^{*}
$$

1.2 Linear Algebra

Suppose

$$
\begin{aligned}
& \mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \\
& \nu=\frac{1}{n} \sum_{j=1}^{n} \delta_{y_{j}}
\end{aligned}
$$

What is $\Pi(\mu, \nu)$? Given by Doubly-Stochastic matrices (DS matrices).

Definition 1.9. $A_{n \times n}=\left(a_{i j}\right)$ is DS if

1. $a_{i j} \geq 0$
2. Row sum $=1$
3. Col sum $=1$
$\frac{1}{n} A \Longleftrightarrow \Pi(\mu, \nu)$.
$P\left(X=x_{i}, Y=y_{j}\right)$.
Special case: Permutation matrices. 1-2, 2-1, 3-3.
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\left(\frac{1}{n} A_{\pi}\right) \Longleftrightarrow \text { Push Forwards }
$$

KP in Linear Algebra.

$$
\begin{gathered}
C=\left(c_{i j}\right), c_{i j}=c\left(x_{i}, y_{j}\right) \\
\frac{1}{n}\langle A, C\rangle=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} c_{i j}
\end{gathered}
$$

KP becomes

$$
\left.\inf _{\text {A over all } D S \text { matrices }}^{n \times n} \ll A, C\right\rangle
$$

Fact 1.10. This mimimum exists and is achieved at some permutation matrix.

$$
\begin{gathered}
(K P)=(M P) \\
\mu=\sum p_{i} \delta_{x_{i}}, \nu=\sum q_{j} \delta_{y_{j}}
\end{gathered}
$$

Find $\Pi(\mu, \nu)$ is some set of matrices

$$
\inf _{A}\langle C, A\rangle
$$

is a Linear programming problem.

2 Convex functions and their duals

2.1 Review

MK OT problem

$$
c(x, y)=\|y-x\|^{2}
$$

Given μ, ν on \mathbb{R}^{d}

$$
\pi(\mu, \nu)-\text { set of couplings }
$$

KP is

$$
\inf _{\pi \in \Pi(\mu, \nu)} \int\|y-x\|^{2} d \pi
$$

If this infimum is given by a coupling $(X, T(X)), X \sim \mu, T(X) \sim \nu$. We say KP admits a Monge solution.

Example 2.1. $\mu=\mathcal{N}(0, I)$ on \mathbb{R}^{d}. $\nu=\mathcal{N}(w, I)$ on \mathbb{R}^{d}. What is the solution of KP?

The solution is a shift that

$$
T(x)=x+w
$$

Here, $(Z, T(Z))$ is the optimal solution to (KP).
How do I argue this? Brenier Theorem.
The reason is $T(X)=\nabla f(x), f(x)=\frac{1}{2}\|x+w\|^{2}$. If you can find a convex function gradient, this must be the optimal.

If μ has a density (absolutely continuous), no matter what ν is, there always exists some convex function $f, \nabla f$ pushforwards μ to ν.

Weak convergence of measures $\left(\rho_{k}, k \geq 1\right)$ seq. in $P\left(\mathbb{R}^{d}\right)$
Say $\rho_{k} \rightarrow \rho$ if

$$
\int f d \rho_{k}=\int f d \rho
$$

For every bounded continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Example 2.2. From [0, 1], draw k partitions.

$$
\rho_{k}=U n i f\left[\frac{i}{k}, i=1,2, \ldots, k\right]
$$

When $k \rightarrow \infty$,

$$
\rho_{k} \rightarrow \rho=U n i f[0,1]
$$

Why is this true? Take any f bounded and continuous.

$$
\int f d \rho_{k}=\sum f(i / k) \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n} f(i / k)==_{k \rightarrow \infty} \int_{0}^{1} f(x) d x=\int f(x) \rho(d x)
$$

Even $X_{1}, \ldots, X_{k} \sim_{i i d} \operatorname{Unif}[0,1]$.

$$
\frac{1}{k} \sum_{i=1}^{k} \delta_{X_{i}} \rightarrow_{a . s .}^{k \rightarrow \infty} U n i f[0,1]
$$

2.2 Convex Analysis

Definition 2.3. $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called convex if for any $x, y \in \mathbb{R}^{d}$, any $0<t<1$

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y)
$$

And strictly convex if

$$
f((1-t) x+t y)<(1-t) f(x)+t f(y)
$$

Definition 2.4. f is concave if $-f$ is convex.
Definition 2.5. A is a convex set, if $x, y \in A$, then

$$
\{(1-t) x+t y, 0 \leq t \leq 1\} \subseteq A
$$

Example 2.6. $x \in \mathbb{R}^{d}, f(x)=\|x\|^{2}$ strictly convex.
Example 2.7. If $f(x)=\sum_{i}\left|x_{i}\right|$. This is convex but not strictly convex.
Example 2.8. $f(x)=\|x\|_{p}^{p}, p>1$, is strictly convex. If $p<1$, concave function.
Example 2.9. $f(x)=\log \left(\sum_{i=1}^{d} e^{X_{i}}\right), x \in \mathbb{R}^{d}$.
Verify this is convex. Show the Hessian.
Convex functions could be infinity somewhere
Example 2.10. $f(x)= \begin{cases}-\log x & x>0 \\ +\infty & x \leq 0\end{cases}$
This is also a convex function.
Domain of $f=\left\{x \in \mathbb{R}^{d}: f(x)<+\infty\right\} \neq \emptyset$.

2.2.1 How convex sets related to convex function

Suppose Ω is a convex set.
Convex indicator function: $f(x)= \begin{cases}0, & x \in \Omega \\ +\infty, & x \notin \Omega\end{cases}$
Verify that f is convex function if Ω is convex set.
Conversely, convex functions to convex sets.
Suppose f is a Convex function. Consider the epigraph of f

$$
e p i(f)=\Omega=\left\{(x, t) \in \mathbb{R}^{d+1}: t \geq f(x)\right\}
$$

f is convex function if and only if the epigraph is convex set.

Properties

1. Closed under supremum.

$$
\begin{gathered}
\left\{f_{\alpha}, \alpha \in I\right\} \\
f_{\alpha} \rightarrow \mathbb{R} \cup\{\infty\}
\end{gathered}
$$

is convex, then so is

$$
f(x)=\sup _{\alpha} f_{\alpha}(x)
$$

$x, y, 0<t<1$

$$
f_{\alpha}((1-t) x+t y) \leq(1-t) f_{\alpha}(x)+t f_{\alpha}(y)
$$

Then

$$
\sup _{\alpha} f_{\alpha}((1-t) x+t y) \leq \sup _{\alpha}\left[(1-t) f_{\alpha}(x)+t f_{\alpha}(y)\right]
$$

2. Convex functions may not be always differentiable, or continuous.
$f(x)= \begin{cases}x^{2}, & -1<x<1 \\ 2, & x= \pm 1 \\ \infty, & |x|>1\end{cases}$
This function is convex but not continuous at the boundary.
It is locally Lipschitz in the interior $(\operatorname{dom}(f))$
It is differentiable almost everywhere inside $\operatorname{interior}(\operatorname{dom}(f))$.
It is "double differentiable" a.s.

We are only going to consider a convex function that are lower semicontinuous

$$
\begin{gathered}
\left(x_{k}\right) \rightarrow x \\
\lim f\left(x_{k}\right) \geq f(x) \Longleftrightarrow \text { epi(f) is closed }
\end{gathered}
$$

3. Every convex lower semicontinuous function can be written in the following representation

$$
\exists\left(a_{\alpha} \in \mathbb{R}^{d}, b_{\alpha} \in \mathbb{R}, \alpha \in I\right)
$$

such that

$$
f(x)=\sup _{\alpha}[\underbrace{\left\langle a_{\alpha}, x\right\rangle+b_{\alpha}}_{\text {affine in } x}]
$$

This is a dual representation of f.
Definition 2.11. Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$. Define Legendre transform (convex conjugate) of f,

$$
f^{*}(y)=\sup _{x \in \mathbb{R}^{d}}[\langle x, y\rangle-f(x)] \rightarrow \text { convex l.s.c function }
$$

Double star?

$$
\begin{gathered}
f^{* *}(x)=\sup _{y \in \mathbb{R}^{d}}\left[\langle x, y\rangle-f^{*}(y)\right] \\
f^{* *}=f \Longleftrightarrow \text { fis convex }+l s c
\end{gathered}
$$

Otherwise, $f^{* *}$ is called "convex evelope".
Example 2.12. $f(x)=\frac{1}{2}\|x\|^{2}$.

$$
f^{*}(x)=\sup _{x}\left[\langle x, y\rangle-\frac{1}{2}\|x\|^{2}\right]
$$

Let $g(x)=\langle x, y\rangle-\frac{1}{2}\|x\|^{2}$

$$
\nabla g(x)=y-x=0
$$

Therefore,

$$
f^{*}(x)=\frac{1}{2}\|y\|^{2}=f(y)
$$

$f=f^{*}$ is self-dual.

Example 2.13. $f(x)= \begin{cases}-\log x, & x>0 \\ +\infty, & x \leq 0\end{cases}$

$$
f^{*}(y)= \begin{cases}-1-\log |y|, & y<0 \\ +\infty, & y \geq 0\end{cases}
$$

What if we have a $f^{* *}$? Since $f(x)$ is convex and lsc, we get back $f(x)$.
Example 2.14. $\Omega=[-1,1]^{d}, f(x)= \begin{cases}0, & x \in \Omega \\ +\infty, & x \notin \Omega\end{cases}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x \in \mathbb{R}^{d}}[\langle x, y\rangle-f(x)] \\
& =\sup _{x \in \Omega}[\langle x, y\rangle] \\
& =\sup _{x \in[-1,1]^{d}} \sum_{i=1}^{d} x_{i} y_{i} \\
& =\|y\|_{1}
\end{aligned}
$$

$$
\begin{aligned}
f^{* *}(x) & =\sup _{y \in \mathbb{R}^{d}}\left[\langle x, y\rangle-f^{*}(y)\right] \\
& =\sup _{y \in \mathbb{R}^{d}}\left[\langle x, y\rangle-\|y\|_{1}\right] \\
& = \begin{cases}+\infty, & \text { if } x \notin \Omega \\
0, & \text { if } x \in \Omega\end{cases}
\end{aligned}
$$

Interestingly, if $\Omega=(-1,1)^{d}, f^{* *}(x)=[-1,1]^{d}$.
Theorem 2.15. Suppose f and f^{*} are convex and differentiable over \mathbb{R}^{d}. (Differentiable implies lsc).

1. $f(x)+f^{*}(y) \geq\langle x, y\rangle$ for all $x, y \in \mathbb{R}^{d}$, with $=$ holds if and only if $y=$ $\nabla f(x)$.
2. $\nabla f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \nabla f^{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are inverse of one another.

$$
\begin{aligned}
& \nabla f\left(\nabla f^{*}(y)\right)=y \\
& \nabla f^{*}(\nabla f(x))=x
\end{aligned}
$$

Proof. Idea of the proof.

$$
\begin{gathered}
f^{*}(y)=\sup _{x}[\langle x, y\rangle-f(x)] \geq\langle x, y\rangle-f(x) \\
f(x)+f^{*}(y) \geq\langle x, y\rangle
\end{gathered}
$$

Where the supremum is achieved?
FO condition:

$$
\begin{gathered}
y=\nabla f(x) \\
f^{*}(y)=\langle x, y\rangle-f(x), y=\nabla f(x)
\end{gathered}
$$

(2) ∇f and ∇f^{*} are inverse of each other. Very interesting fact.

Start from (1). Replace f by f^{*}, and f^{*} by $f^{* *}=f$.

$$
\begin{gathered}
f(x)=\sup _{y}\left[\langle x, y\rangle-f^{*}(y)\right], \text { maximized when } x=\nabla f^{*}(y) . \\
f(x)=\langle x \cdot y\rangle-f^{*}(y), x=\nabla f^{*}(y)
\end{gathered}
$$

From (1), $\langle x, \nabla f(x)\rangle-f^{*}(\nabla f(x))=f(x)$.

2.3 Weak Convergence distances

BL denotes bounded Lipschitz that $\|f\|_{\infty} \leq 1$, Lip -1 .

$$
\sup _{f \in B L}\left|\int f d \mu-\int f d \nu\right|
$$

Consider

$$
W_{2}^{2}(\mu, \nu)=\inf _{\Pi(\mu, \nu)} \int\|y-x\|^{2} d \pi=\text { dual representation }
$$

Then we can see Brenier's Theorem.

$$
\begin{aligned}
& \nabla f: \mu \rightarrow \nu \\
& \nabla f^{*}: \nu \rightarrow \mu
\end{aligned}
$$

3 Kantorovich Duality

3.1 Review of Convex functions

$f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$, convex and lower semicontinuous.
We can define dual/conjugate with

$$
f^{*}(y)=\sup _{x \in \mathbb{R}^{d}}[\langle x, y\rangle-f(x)]
$$

1. $\forall x, y, f(x)+f^{*}(y)-\langle x, y\rangle \geq 0,=0$ iff $y=\nabla f(x)$ or $x=\nabla f^{*}(y)$.
2. $\nabla f\left(\nabla f^{*}(x)\right)=x$

Example 3.1. $d=1 . f(x)=\left\{\begin{array}{ll}x \log x, & x \geq 0 \\ \infty, & x<0\end{array}\right.$. cx lsc.
Check convexity,

$$
f^{\prime}(x)=1+\log x
$$

Check lsc.

$$
\lim _{x \rightarrow 0} x \log x=0
$$

Let $y=1+\log x, x=e^{y-1}$.

$$
\begin{gathered}
\left(f^{*}\right)^{\prime}(y)=e^{y-1} \\
f^{*}(y)=\sup _{x}[x y-x \log x]=\sup _{x \geq 0}[x y-x \log x]=e^{y-1}
\end{gathered}
$$

Domain of f^{*} is \mathbb{R} and $\operatorname{Domain}(f)=[0, \infty)$.
Another observation
Take f cx and lsc

$$
\begin{aligned}
\inf _{x \in \mathbb{R}^{d}} f(x) & =-\sup _{x \in \mathbb{R}^{d}}[-f(x)] \\
& =-\sup _{x}[\langle x, 0\rangle-f(x)] \\
& =-f^{*}(0)
\end{aligned}
$$

The infimum is attained via checking the dual at 0 .
Let x^{*} is the unique minimizer,

$$
\begin{gathered}
\nabla f\left(x^{*}\right)=0, x^{*}=\nabla f^{*}(0) \\
x^{*}=\nabla f^{*}(0)
\end{gathered}
$$

3.2 Kantorovich Duality

Very similar to 3.1 , but in infinity dimension.
Consider the optimal transport problem with a continuous cost $c: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow$ $[0, \infty]$.

For $\pi \in \Pi(\mu, \nu)$,

$$
I(\pi)=\int c(x, y) d \pi
$$

cost of transport using the plan π.
We wish to find out

$$
\inf _{\pi \in \Pi} I(\pi)
$$

This is doing in the space of functions/measures.
For any function $\varphi \in L^{1}(\mu)$ and $\psi \in L^{1}(\nu) . L^{1}$ means that the integral is finite.

In this case, $\int|\varphi| d \mu<\infty$.
Define

$$
J(\varphi, \psi)=\int \varphi(x) d \mu+\int \psi(y) d \nu
$$

Let $\Phi=\{\varphi, \psi$ such that $\varphi(x)+\psi(y) \leq c(x, y), \forall x, y\}$.
Theorem 3.2. (Kantorovich Duality)

$$
\inf _{\pi \in \Pi(\mu, \nu)} I(\pi)=\sup _{\Phi} J(\varphi, \psi)
$$

The supremum above does not change if we restrict φ, ψ to be bounded continuous functions.

One side is obvious.
Suppose $\pi \in \Pi(\mu, \nu)$. Take any φ, ψ satisfying $\varphi(x)+\psi(y) \leq c(x, y), \forall x, y$.

$$
\begin{aligned}
c(x, y) & \geq \varphi(x)+\psi(y) \\
I(\pi)=\int c(x, y) & \geq \int \varphi(x) d \pi+\int \psi(y) d \pi \\
& =\int \varphi(x) d \mu+\int \psi(y) d \nu \\
& \geq \sup _{\Phi}[J(\varphi, \psi)]
\end{aligned}
$$

Therefore,

$$
\inf _{\pi \in \Pi} I(\pi) \geq \sup _{\Phi}[J(\varphi, \psi)]
$$

K-duality "=" means there is no duality gap. Minimax inequalities.

3.2.1 Quadratic Cost

$$
\begin{aligned}
c(x, y) & =\frac{1}{2}\|y-x\|^{2} \\
& =\frac{1}{x}\|x\|^{2}+\frac{1}{2}\|y\|^{2}-\langle x, y\rangle
\end{aligned}
$$

$$
\begin{aligned}
I(\pi)= & \int c(x, y) d \pi=\frac{1}{2} \int\|x\|^{2} d \pi+\frac{1}{2} \int\|y\|^{2} d \pi-\int\langle x, y\rangle d \pi \\
= & \frac{1}{2} \int\|x\|^{2} d \mu+\frac{1}{2} \int\|y\|^{2} d \nu-\int\langle x, y\rangle d \pi \\
& \inf _{\Pi(\mu, \nu)} I(\pi)=\frac{1}{2} \mathbb{E}_{\mu}\|x\|^{2}+\frac{1}{2} \mathbb{E}_{\nu}\|y\|^{2}-\sup _{\pi} \int\langle x, y\rangle d \pi
\end{aligned}
$$

We give this a name Wasserstein- 2 distance between μ and ν that

$$
W_{2}^{2}(\mu, \nu)=\inf _{\Pi(\mu, \nu)} I(\pi)
$$

Fact. $W_{2}(\mu, \nu)$ is a metric on $P\left(\mathbb{R}^{d}\right)$ with finite second moment.
By K-duality,

$$
\begin{aligned}
W_{2}^{2}(\mu, \nu) & =\inf _{\Pi(\mu, \nu)} I(\pi)=\frac{1}{2} \mathbb{E}_{\mu}\|x\|^{2}+\frac{1}{2} \mathbb{E}_{\nu}\|y\|^{2}-\sup _{\Pi(\mu, \nu)} \int\langle x, y\rangle d \pi \\
& =\sup _{\Phi}\left[\int \varphi d \mu+\int \psi(y) d \nu\right] \\
\sup _{\Pi(\mu, \nu)} \int\langle x, y\rangle d \pi & =\inf _{\Phi}[\frac{1}{2} \int(\underbrace{\|x\|^{2}-\varphi(x)}_{f(x)}) d \mu+\frac{1}{2} \int(\underbrace{\|y\|^{2}-\psi(y)}_{g(y)}) d \nu]
\end{aligned}
$$

Constraints here is

$$
\begin{gathered}
\varphi(x)+\psi(y) \leq \frac{1}{2}\|y-x\|^{2}=\frac{1}{2}\|y\|^{2}+\frac{1}{2}\|x\|^{2}-\langle x, y\rangle \\
f(x)+g(y) \geq\langle x, y\rangle \\
\sup _{\Pi(\mu, \nu)} \int\langle x, y\rangle d \pi= \\
\inf _{f(x)+g(y) \geq\langle x, y\rangle, \forall x, y}\left[\int f(x) d \mu+\int g(y) d \nu\right]
\end{gathered}
$$

Are their such functions satisfy this constraint??? Yes! Recall that

$$
f(x)+f^{*}(y)-\langle x, y\rangle \geq 0
$$

Now fix f,

$$
\inf \int f(y) d \nu, g(y) \geq\langle x, y\rangle-f(x), \forall x
$$

$$
g(y) \geq \sup _{x}[\langle x, y\rangle-f(x)]=f^{*}(y)
$$

Therefore,

$$
\begin{gathered}
\inf \int g(y) d \nu=\int f^{*}(y) d \nu \\
\sup _{\Pi(\mu, \nu)} \int\langle x, y\rangle d \pi= \\
=\inf _{f(x)+g(y) \geq\langle x, y\rangle, \forall x, y}\left[\int f(x) d \mu+\int g(y) d \nu\right] \\
\\
=\inf _{f \in L^{1}(\mu)}\left[\int f(x) d \mu+\int f^{*}(y) d \nu\right]
\end{gathered}
$$

Fix f^{*}, and we optimize over f.

$$
\begin{aligned}
& =\inf _{f}\left[\int f^{* *}(x) d \mu+\int f^{*}(y) d \nu\right] \\
\sup _{\pi} \int\langle x, y\rangle d \pi & =\inf _{f c x, l s c}\left[\int f(x) d \mu+\int f^{*}(y) d \nu\right]
\end{aligned}
$$

This trick called double convexification trick.

Ultimate form of W2 distance

$$
\frac{1}{2} W_{2}^{2}(\mu, \nu)=\frac{1}{2}\left[\int\|x\|^{2} d \mu+\int\|y\|^{2} d \nu\right]-\inf _{f c x l s c .}\left[\int f(x) d \mu+\int f^{*}(y) d \nu\right]
$$

3.2.2 Other cost functions

Earth Move Distance: Wasserstein-1 distance

$$
\begin{gathered}
c(x, y)=\|y-x\| \\
W_{1}(\mu, \nu)=\inf _{\Pi(\mu, \nu)} \int\|y-x\| d \pi
\end{gathered}
$$

What is it dual representation?
K-duality says

$$
=\sup _{f \text { Lip }}\left|\int f d \mu-\int f d \nu\right|
$$

Lipschitz-1 means

$$
|f(x)-f(y)| \leq\|x-y\|
$$

Recall There is a metric for weak convergence given by

$$
d(\mu, \nu):=\sup _{f \in B L}\left|\int f d \mu-\int f d \nu\right|
$$

If we have

$$
\lim _{n \rightarrow \infty} d\left(\mu_{n}, \nu\right)=0
$$

means that $\left(\mu_{n}\right)$ weakly converges to ν.

$$
d(\mu, \nu) \leq W_{1}(\mu, \nu)
$$

W_{1} gives a stronger topology.
Consider only probability measures that supported on a compact set.
In this case, these topologies are equivalent.

3.2.3 Wasserstein-p Distance

$$
W_{p}(\mu, \nu)=\inf _{\Pi(\mu, \nu)} \int\|x-y\|^{p} d \pi
$$

This is Wasserstein p metric. If $p \neq 2$, there is no convenience reformulation of K-duality.
$p=\infty$

$$
W_{\infty}=\inf _{\Pi(\mu, \nu)} \underbrace{\operatorname{ess} \sup _{\pi}(\|y-x\|)}_{\inf \{a>0: \pi(\|y-x\| \leq a)=1\}}
$$

$p=0 \quad$ This is the total variation.

$$
c(x, y)=\mathbf{1}\{x \neq y\}= \begin{cases}1, & \text { if } x \neq y \\ 0, & \text { otherwise }\end{cases}
$$

K-duality still holds and can be reformulated as

$$
\begin{aligned}
\|\mu-\nu\|_{T V} & =\inf _{\pi \in \Pi(\mu, \nu)} \pi(x \neq y) \\
& =\sup _{A \text { Borel }}|\mu(A)-\nu(A)|
\end{aligned}
$$

Strassen's Theorem (1950).
Proof. Idea of proof of K-duality

$$
\inf _{\pi} I(\pi)=\sup _{\Phi}\left[\int \varphi d \mu+\int \psi d \nu\right]
$$

Consider indicator function of $\Pi(\mu, \nu)$.

$$
\begin{aligned}
& M_{+}=\text {space of nonnegative measures } \\
& \qquad F(\pi)= \begin{cases}0, & \text { if } \pi \in \Pi(\mu, \nu) \\
+\infty, & \pi \in M_{+}, \pi \notin \Pi(\mu, \nu)\end{cases}
\end{aligned}
$$

Lemma 3.3. Here we have
Proof.

$$
F(\pi)=\sup _{\varphi \in L^{1}(\mu), \psi \in L^{1}(\nu)}\left[\int \varphi d \mu+\int \psi d \nu-\int(\varphi(x)+\psi(y)) d \pi\right]
$$

Proof. Take $\pi \notin \Pi(\mu, \nu)$. Assume $(x, y) \sim \pi$, then $x \sim \mu^{\prime} \neq \mu$.
There is some φ (bounded cont.) s.t.

$$
\int \varphi(x) d \mu>\int \psi(x) d \pi
$$

$\lambda>0$,

$$
\lambda\left[\int \varphi(x) d \mu-\int \varphi(x) d \pi\right]>0
$$

Let $\lambda \rightarrow \infty$. Thus, there exists something let

$$
F(\pi)=\infty
$$

If $\pi \in \Pi$, we can construct

$$
F(\pi)=0
$$

Proof. Back to the previous proof

$$
I(\pi)+F(\pi)=\inf _{\pi} I(\pi)=\sup _{\Phi}\left[\int \varphi d \mu+\int \psi d \nu\right]
$$

$$
\begin{aligned}
\inf _{\Pi} I(\pi) & =\inf _{\pi \in M_{+}}[I(\pi)+F(\pi)] \\
& =\inf _{M_{+}}\left[\int c d \pi+\sup _{\varphi, \psi}\left[\int \varphi d \mu+\int \psi d \nu-\int(\varphi+\psi) d \pi\right]\right] \\
& =\inf _{M_{+}} \sup _{\varphi, \psi}\left[\int \varphi d \mu+\int \psi d \nu-\int(\varphi(x)+\psi(y)-c(x, y)) d \pi\right] \\
& ={ }^{M i n M a x} \sup _{\varphi, \psi}\left[\int \varphi d \mu+\int \psi d \nu-\sup _{M_{+}} \int(\varphi(x)+\psi(y)-c(x, y)) d \pi\right] \\
& =\underset{\varphi, \psi, \varphi(x)+\psi(y) \leq c(x, y)}{ }\left[\int \varphi d \mu+\int \psi d \nu\right]
\end{aligned}
$$

4 Brenier's Theorem

4.1 Review of duality

$\mu, \nu \in \mathbb{R}^{d}, c: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty]$.

$$
\begin{gathered}
I(\pi)=\int c(x, y) d \pi \\
\inf _{\pi \in \Pi\left(\rho_{0}, \rho_{1}\right)} I(\pi)=\sup _{\Phi} J(\phi, \psi)=\sup _{\Phi} \int \varphi(x) d \mu(x)+\int \psi(y) d \nu(y)
\end{gathered}
$$

Here, $\varphi(x)+\psi(y) \leq c(x, y), \forall x, y$.
$c(x, y)=\frac{1}{2}\|y-x\|^{2}$

$$
\inf _{\Pi(\mu, \nu)} I(\pi)=\frac{1}{2} W_{2}^{2}(\mu, \nu)
$$

Duality takes form that

$$
\sup _{\pi} \int\langle x, y\rangle d \pi(x, y)=\inf _{c x, l s c}\left[\int f(x) \mu(d x)+\int f^{*}(y) \nu(d y)\right]
$$

For
$\frac{1}{2} W_{w}^{2}(\mu, \nu)=\sup _{c x, l s c}\left[\int\left(\frac{1}{2}\|x\|^{2}-f(x)\right) \mu(d x)+\int\left(\frac{1}{2}\|y\|^{2}-f^{*}(y)\right) \nu(d y)\right]$
Transformed functions

$$
\begin{aligned}
\phi(x) & =\frac{1}{2}\|x\|^{2}-f(x) \\
\phi^{*}(y) & =\frac{1}{2}\|y\|^{2}-f^{*}(x)
\end{aligned}
$$

These functions are c-concave functions and its dual. A pair of dual cconcave.

4.2 Brenier's Theorem

Theorem 4.1. Let μ, ν be two probability measures with finite second moments. Then, $\exists\left(f, f^{*}\right)$ a pair of cx, lsc function such that

$$
\sup _{\Pi(x, y)} \int\langle x, y\rangle d \pi(x, y)=\int f(x) \mu(d x)+\int f^{*}(x) \nu(d y)
$$

Theorem 4.2. (Breniers' 87) Suppose μ is absolutely continuous. Then,

1. There is a unique optimal coupling π of the Monge-Kantorovich OT problem given by $(X, \nabla f(X)), X \sim \mu$. Here, ∇f is the unique (uniquely determined μ almost everywhere) gradient of a convex function f such that ∇f pushforwards μ to ν. This function f also attains the maximum in the duality (in Thm. 4.1).
2. ∇f is the unique solution to the Monge problem

$$
\int\|x-\nabla f(x)\|^{2} \mu(d x)=\min _{T_{\# \mu \nu \nu}} \int\|x-T(x)\|^{2} \mu(d x)
$$

3. Suppose ν is also absolutely continuous. Then, for μ a.e. x and ν a.e. y,

$$
\nabla f \circ \nabla f^{*}(y)=y, \nabla f^{*} \circ \nabla f(x)=x
$$

Here, ∇f^{*} is the unique solution to the OT problem transporting μ to ν.
Proof. We already know there is an optimal coupling π,
Duality,

$$
\begin{gathered}
\int\langle x, y\rangle d \pi^{*}=\sup _{\Pi(\mu, \nu)} \int\langle x, y\rangle d \pi={ }^{\text {duality }} \int f(x) \mu(d x)+\int f^{*}(y) \nu(d y) \\
\int\left(f(x)+f^{*}(y)-\langle x, y\rangle\right) d \pi^{*}(x, y)=0
\end{gathered}
$$

Thus, π^{*} a.e. (x, y), we have

$$
f(x)+f^{*}(y)=\langle x, y\rangle
$$

Further, we must have $y=\nabla(x), \forall \mu$ a.e. x.
Thus,

$$
\pi^{*}={ }^{\text {Law }}(x, \nabla f(x)), \text { for } f \text { that attains max in duality. }
$$

This argument is showing that any optimal coupling is given by $\nabla f(x)$, where f attains duality.

Suppose, you found some f such that ∇f pushforward μ to ν.
Can you claim the optimal coupling $\pi^{*}={ }^{\text {Law }}(x, \nabla f(x))$.
Benefit of duality.
Define $\pi=$ Law of $(X, \nabla f(x))$.

$$
\begin{aligned}
\int\langle x, y\rangle d \pi & =\int\langle x, \nabla f(x)\rangle d \mu \\
& =\int f(x) d \mu+\int f^{*}(y) d \nu
\end{aligned}
$$

$\sup _{\Pi(\mu, \nu)} \int\langle x, y\rangle d \pi=\int\langle x, y\rangle d \pi=\int f(x) d \mu+\int f^{*}(y) d \nu=\inf \left[\int g(x) d \mu+\int g^{*} d \nu\right]$
Uniqueness in both LHS/RHS.
We have already argues that any optimal π^{*} must be given by ∇f, for some cx , lsc function f.

Suppose $\left(f, f^{*}\right)$ and $\left(g, g^{*}\right)$ are two pairs of cx, lsc functions that give optimal couplings.
Proof. Call $\left(f, f^{*}\right)=\pi^{*}$.

$$
\int\langle x, \nabla f(x)\rangle d \mu(x)=\int\langle x, y\rangle d \pi^{*}=\int\left(g(x)+g^{*}(y)\right) d \pi^{*}(x, y)
$$

Because $\pi^{*}=(X, \nabla f(X))$,
$\int\langle x, \nabla f(x)\rangle d \mu(x)=\int\langle x, y\rangle d \pi^{*}=\int\left(g(x)+g^{*}(y)\right) d \pi^{*}(x, y)=\int\left(g(x)+g^{*}(\nabla f(x))\right) d \mu(x)$
Thus,

$$
\int\left(g(x)+g^{*}(\nabla f(x))-\langle x, \nabla f(x)\rangle\right) \mu(d x)=0
$$

Thus,

$$
g(x)+g^{*}(\nabla f(x))-\langle x, \nabla f(x)\rangle=0, \mu \text { a.e. }
$$

Thus,

$$
\nabla f(x)=\nabla g(x), \mu \text { a.e. } x
$$

Uniqueness!
Solving OT for quadratic cost is equivalent looking for an optimal convex, lsc function.

Theorem 4.3. Let φ be a cx, lsc function, and let π be a coupling of μ, ν s.t.

$$
\int\left(\varphi(x)+\varphi^{*}(y)-\langle x, y\rangle\right) d \pi(x, y) \leq \epsilon
$$

Then,

$$
I(\pi) \leq\left(\inf _{\Pi} I\right)+\epsilon=\frac{1}{2} W_{2}^{2}(\mu, \nu)+\epsilon
$$

4.3 Cyclical monotonicity

Suppose we have discrete distributions that

$$
\begin{aligned}
& \mu=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}, \nu=\frac{1}{N} \sum_{i=1}^{N} \delta_{y_{j}} \\
& \left\{x_{1}, \ldots, x_{N}\right\}, \quad\left\{y_{1}, \ldots, y_{N}\right\}
\end{aligned}
$$

Optimal matching problem. Double stochastic matrices

$$
\min _{\Pi(\mu, \nu)} \int\|y-x\|^{2} d \pi=\min _{\sigma \in S_{N}} \frac{1}{N} \sum_{i=1}^{N}\left\|x_{i}-y_{\sigma_{i}}\right\|^{2}
$$

$$
S_{N} \text { is permutation of }\{1,2, \ldots, N\}
$$

Question: Can one characterize the set of permutations where the minimum is achieved?

WLOG, assume the identity permutation is optimal.

$$
\sum_{i}^{N}\left\|x_{i}-y_{i}\right\|^{2} \leq \sum_{i=1}^{N}\left\|x_{i}-y_{\sigma_{i}}\right\|^{2}, \forall \sigma \in S_{N}
$$

Consider permutation containing a single non-trivil cycle. One non-trivil cycle, others are identity (single cycle).

$$
\begin{aligned}
& {\left[\begin{array}{llll}
11 & 10 & 5 & 2
\end{array} 1\right]\left[\begin{array}{ll}
3 & 3
\end{array}\right]\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{ll}
6 & 6
\end{array}\right]} \\
& {\left[\begin{array}{llll}
i_{1} & i_{2} & i_{3} \ldots i_{m}
\end{array}\right]\left[\begin{array}{ll}
3 & 3
\end{array}\right]\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{ll}
6 & 6
\end{array}\right]}
\end{aligned}
$$

Identity elsewhere. To be optimal, we must have

$$
\sum_{l=1}^{m}\left\|x_{i_{L}}-y_{i_{L}}\right\|^{2} \leq \sum_{l=1}^{m}\left\|x_{i_{L}}-y_{i_{L-1}}\right\|^{2}
$$

Definition 4.4. A Set of points $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$ is called cyclically monotone if for all $m \geq 1$, and all cycles $i_{1} \leftarrow i_{2} \leftarrow i_{3} \leftarrow \ldots \leftarrow i_{m}$, the following holds.

$$
\sum_{l=1}^{m}\left\|x_{i_{L}}-y_{i_{L}}\right\|^{2} \leq \sum_{l=1}^{m}\left\|x_{i_{L}}-y_{i_{L-1}}\right\|^{2}
$$

Theorem 4.5. Identity is the optimal permutation if and only if $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is cyclically monotone.

Proof. Every permutation can be decomposed as union of disjoint cycles.
If

$$
\sum\left\|x_{i}-y_{i}\right\| \leq \sum\left\|x_{i}-y_{\sigma_{i}}\right\|^{2}
$$

Definition 4.6. A subset $\Gamma \subseteq \mathbb{R}^{d} \times \mathbb{R}^{d}$ is called cyclically monotone if for any collection of $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\} \subseteq \Gamma$,

$$
\sum\left\|x_{i}-y_{i}\right\|^{2} \leq \sum_{i=1}^{m}\left\|x_{i}-y_{i-1}\right\|^{2}
$$

Theorem 4.7. Any optimal coupling π^{*} of MK OT problem, must be concentrated $\left(\exists \Gamma \subseteq \mathbb{R}^{d} \times \mathbb{R}^{d}\right.$, cyclically monotone, $\left.\pi^{*}(\Gamma)=1\right)$ on a cyclically monotone set.

Proof. Want to couple μ to ν.
We will sample $X_{1}, \ldots, X_{N} \sim \mu, y_{1}, \ldots, y_{N} \sim \nu$. Match these optimally.
Have

$$
\pi_{N}^{*} \rightarrow_{N \rightarrow \infty} \pi^{*}
$$

from support

$$
\Gamma_{N} \rightarrow \Gamma
$$

4.4 Connect Brenier Theorem to Cyclically monotonicity

If we have μ abs. cont., if we have ν

$$
\begin{aligned}
\pi^{*} & ={ }^{L a w}(X, \nabla f(X)), x \sim \mu \\
\Gamma & =\left\{(x, \nabla f(x)), x \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

Rockafeller's Theorem.
If Γ is cyclically monotone, Conversely, any maximumally cyclically monotone subset, must be given by $\left\{(x, \partial f(x)), x \in \mathbb{R}^{d}\right\}$.

5 Lecture 5

5.1 Review Brenier's Theorem

Example 5.1. \mathbb{R}^{d}, and we have $\mu=\mathcal{N}\left(a_{1}, \Sigma_{1}\right), \nu=\mathcal{N}\left(a_{2}, \Sigma_{2}\right)$. What is the optimal MK map between them?

Consider the map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$,

$$
T(x)=a_{2}+A\left(x-a_{1}\right), A=\Sigma_{1}^{-1 / 2}\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2} \Sigma_{1}^{-1 / 2}
$$

We can know A is symmetric and PD .
If $X \sim \mathcal{N}\left(a_{1}, \Sigma_{1}\right)$, then $y=T(x) \sim \mathcal{N}(\cdot, \cdot)$.

$$
\mathbb{E}[y]=a_{2}+\mathbb{E}\left[A\left(x-a_{1}\right)\right]=a_{2}
$$

We know

$$
\begin{aligned}
\Sigma_{y} & =A \Sigma_{1} A=\Sigma_{1}^{-1 / 2}\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2} \Sigma_{1}^{-1 / 2} \Sigma_{1} \Sigma_{1}^{-1 / 2}\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2} \Sigma_{1}^{-1 / 2} \\
& =\Sigma_{2}
\end{aligned}
$$

How do we know this is a gradient of a convex function?
Define

$$
\begin{aligned}
f(x) & =\left\langle a_{2}, x\right\rangle+\frac{1}{2}\left\langle\left(x-a_{1}\right), A\left(x-a_{1}\right)\right\rangle \\
& =a_{2}^{T} x+\frac{1}{2}\left(x-a_{1}\right)^{T} A\left(x-a_{1}\right)
\end{aligned}
$$

Then

$$
\nabla f(x)=a_{2}+A\left(x-a_{1}\right)=T(x)
$$

Since $f(x), A$ is PD, we know $f(x)$ is convex.
Then, $T(x)$ is the optimal map.

$$
W_{2}^{2}(\mu, \nu)=\mathbb{E}_{\mu}\|T(x)-x\|^{2}=\mathbb{E}\left\|a_{2}+A\left(x-a_{1}\right)-x\right\|^{2}=\left\|a_{2}-a_{1}\right\|^{2}+\operatorname{tr}\left(\Sigma_{z}\right)
$$

Consider

$$
\begin{aligned}
z & =T(x)-x=a_{2}+A\left(x-a_{1}\right)-x \sim \mathcal{N}\left[a_{2}-a_{1}, \Sigma_{z}\right] \\
& =a_{2}-A a_{1}+(A-I) x
\end{aligned}
$$

$$
\begin{aligned}
\Sigma_{z} & =(A-I) \Sigma_{1}(A-I) \\
& =\Sigma_{1}+\Sigma_{2}-2\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2}
\end{aligned}
$$

$$
W_{2}^{2}(\mu, \nu)=\left\|a_{2}-a_{1}\right\|^{2}+\operatorname{Tr}\left[\Sigma_{1}+\Sigma_{2}-2\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2}\right]
$$

If $a_{1}=a_{2}$,

$$
W_{2}^{2}(\mu, \nu)=\operatorname{Tr}\left[\Sigma_{1}+\Sigma_{2}-2\left(\Sigma_{1}^{1 / 2} \Sigma_{2} \Sigma_{1}^{1 / 2}\right)^{1 / 2}\right]
$$

Bures metric square on PSD matrices.
If $\Sigma_{1} \Sigma_{2}=\Sigma_{2} \Sigma_{1}$, then

$$
W_{2}^{2}(\mu, \nu)=\left\|a_{1}-a_{2}\right\|^{2}+\operatorname{Tr}\left[\left(\Sigma_{1}^{1 / 2}-\Sigma_{1}^{1 / 2}\right)^{2}\right]
$$

If $\Sigma_{1}=\Sigma_{2}$, then

$$
W_{2}^{2}(\mu, \nu)=\left\|a_{1}-a_{2}\right\|^{2}
$$

Example 5.2. Let $\mu \sim \operatorname{Unif}(D), D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Let $\nu \sim \operatorname{Unif}(U), U=$ $\left\{(x, y): x^{2}+y^{2}=1\right\}$.

A natural guess is to do

$$
T(x)=\frac{x}{\|x\|}
$$

How do I verify T is optimal?
Consider

$$
\begin{aligned}
f(x) & =\|x\| \\
\nabla f(x) & =\frac{x}{\|x\|}
\end{aligned}
$$

Thus, T is optimal for the quadratic cost.

Example 5.3. Take unit square, take μ - Uniform distribution over $[0,1]^{2}$. And $\nu=$ discrete uniform over $\{(0,0),(1,1),(1,0),(0,1)\}$.

Optimal map for transporting μ to ν ?
Another natural guess is to

$$
T(x)=(1(x>1 / 2), 1(y>1 / 2))
$$

Convex function

$$
\begin{gathered}
f(x)=(x-1 / 2)^{+}+(y-1 / 2)^{+} \\
z^{+}=\max (z, 0)
\end{gathered}
$$

Twist,

$$
c(x, y)=-\|y-x\|^{2}
$$

5.2 Optimal transport in 1-dimension

$X \sim \mu, y \sim \nu$ on \mathbb{R}. Find OT from μ to ν for $c(x, y)=\|y-x\|^{2}$.
Cumulative distribution function (CDF).

$$
F_{\mu}(t)=P(x \leq t)
$$

F_{μ} is non-decreasing and

$$
\begin{aligned}
& \lim _{t \rightarrow-\infty} F_{\mu}(t)=0 \\
& \lim _{t \rightarrow \infty} F_{\mu}(t)=1
\end{aligned}
$$

May not be continuous.
Similarly, we could define $F_{\nu}(t)$.
Lemma 5.4. Suppose μ is abs. cont. Then define $U=F_{\mu}(x)$. Then, $U \sim$ Unif $(0,1)$.

Definition 5.5. Define inverse CDF that

$$
F_{\mu}^{-1}(t)=\inf \left\{x: F_{\mu}(x) \geq t\right\}
$$

Corollary 5.6. We have

$$
\left\{t \leq F_{\mu}(x)\right\}=\left\{F_{\mu}^{-1}(t) \leq x\right\}
$$

Proof. Pick $0 \leq t \leq 1$,

$$
P(U \geq t)=P_{\mu}\left(F_{\mu}(x) \geq t\right)=P_{\mu}\left(x \geq F_{\mu}^{-1}(t)\right)=1-t
$$

Lemma 5.7. [Inverse Sampling] Suppose $U \sim \operatorname{Unif}(0,1)$. Then, $y=F_{\nu}^{-1}(U)$. Then, $y \sim \nu$.

Proof. We have

$$
\begin{gathered}
P(Y \leq y)=P\left(F_{\nu}^{-1}(U) \leq y\right)=P\left(U \leq F_{\nu}(y)\right)=F_{\nu}(y) \\
X \rightarrow_{F_{\mu}} U \rightarrow_{F_{\nu}^{-1}} y
\end{gathered}
$$

If we have $X \sim \mu$, and

$$
F_{\nu}^{-1} \circ F_{\nu}(x) \sim \nu
$$

If we take $T(x)=F_{\nu}^{-1} \circ F_{\mu}(x)$. Then, $T(x)=\nabla f(x), \exists f c . x$.
T is an increasing function. Thus, define

$$
f(x)=\int_{0}^{x} T(y) d y
$$

then f is convex.
In 1-d, increasing function \Longleftrightarrow derivative of a convex function. Brenier's Theorem $\Longleftrightarrow T(x)$ is the OT map for quadratic cost.

5.2.1 Natural

Suppose F is strictly increasing. F^{-1} is a well-defined strictly increasing map. If we take $0<p<1$,

$$
\begin{gathered}
F^{-1}(p)=p t h \text { quantile } \\
F^{-1}(1 / 2)=\text { median } \\
F^{-1}(1 / 2)=1 \text { st quantile }
\end{gathered}
$$

$x \mapsto T(x)$ Monotone rearrangements (quantile-quantile maps).
Here,
$\mu 1$ st quantile, median, pth quantile $\mapsto \nu 1$ st quantile, median, pth quantile In 1-d, quadratic cost is not special.

$$
c(x, y)=h(x-y), h \text { strict } c x .
$$

Then, optimal map is monotone rearrangement.

$$
c(x, y)=-h(x-y), h \text { strict concave }
$$

Optimal map is anti-monotone.

$$
F_{\mu}^{-1}(p) \longleftrightarrow F_{\nu}^{-1}(1-p)
$$

Example 5.8. $\mu=\frac{1}{2} \operatorname{Unif}(0,1)+\frac{1}{2} \operatorname{Unif}(3,4) . \nu=\operatorname{Unif}(3,5)$.
We could clearly see the monotone transform map as optimal transport map.

$$
T(x)= \begin{cases}x+3, & \text { if } 0 \leq x \leq 1 \\ x+1, & \text { if } 3 \leq x \leq 4\end{cases}
$$

5.3 Knothe-Rosenblatt Transport (KR map)

f, g are densities on $\mathbb{R}^{d} . x=\left(x_{1}, \ldots, x_{d}\right) \sim f, y=\left(y_{1}, \ldots, y_{d}\right) \sim g$.

$$
f\left(x_{1}, \ldots, x_{d}\right)=f_{1}\left(x_{1}\right) f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{3 \mid 2,1}\left(x_{3} \mid x_{2}, x_{1}\right) \ldots f_{d \mid d-1, \ldots, 1}\left(x_{d} \mid x_{d-1}, \ldots, x_{1}\right)
$$

$$
g\left(y_{1}, \ldots, y_{d}\right)=g_{1}\left(y_{1}\right) g_{2 \mid 1}\left(y_{2} \mid y_{1}\right) g_{3 \mid 2,1}\left(y_{3} \mid y_{2}, y_{1}\right) \ldots g_{d \mid d-1, \ldots, 1}\left(y_{d} \mid y_{d-1}, \ldots, y_{1}\right)
$$

Let T_{1} be the monotone map from $f_{1} \rightarrow g_{1}$

$$
x_{1} \sim f_{1}
$$

$$
y_{1}=T\left(x_{1}\right) \sim g_{1}
$$

$x_{1}=x_{1}, y_{1}=T\left(x_{1}\right)=y_{1}$.
$T_{2 \mid x_{1}}$ monotone map from $f_{2 \mid 1}\left(\cdot \mid x_{1}\right) \rightarrow g_{2 \mid 1}\left(\cdot \mid y_{1}=T\left(x_{1}\right)\right)$.

$$
y_{2}=T_{2 \mid x_{1}}\left(x_{2}\right)
$$

$$
\left(y_{1}, y_{2}\right) \sim g_{1}(y) g_{2 \mid 1}\left(y_{2} \mid y_{1}\right)
$$

Inductively, given x_{1}, \ldots, x_{k-1} and y_{1}, \ldots, y_{k-1}.
$T_{k \mid x_{k-1}, \ldots, x_{1}}$ monotone map $f_{k \mid k-1, \ldots, 1}\left(\cdot \mid x_{k-1}, \ldots, x_{1}\right) \rightarrow g_{k \mid k-1, \ldots, 1}\left(\cdot \mid y_{k-1}, \ldots, y_{1}\right)$. This defines $\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(y_{1}, \ldots, y_{d}\right)$. KR-map.

1. Need to know inverses of all conditional.
2. KR map is traingular. To generate y_{k}, I only need to know x_{1}, \ldots, x_{k}.
3. Train neural network to produce an estimate.
4. The order in which x_{1}, \ldots, x_{d} appears matter. d ! KR map.
5. No optimality. However,

Consider $c_{\epsilon}(x, y)=\sum_{i=1}^{d} \lambda_{i}(\epsilon)\left(x_{i}-y_{i}\right)^{2}$ a weighted quadratic cost.
$\lambda_{i}(\epsilon)>0$.
Take f, g, OT w.r.t. e_{ϵ}. T_{ϵ}
Theorem 5.9. Suppose $k=1,2, \ldots, d-1$

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{\lambda_{k+1}(\epsilon)}{\lambda_{k}(\epsilon)}=0
$$

Then, $T_{\epsilon} \rightarrow_{L^{2}(f)} T($ KR map $)$.

5.4 Dynamical Optimal Transport

ρ_{1}, ρ^{\prime} densities on \mathbb{R}^{d}.
We have a Brenier map $x \sim \rho, \nabla \psi(x) \sim \rho^{\prime} . \psi$ cx Brenier map.

$$
x_{t}=(1-t) x+t \nabla \psi(x)
$$

Call this $T_{t}(x)=(1-t) x+t \nabla \psi(x)$. $X \sim \rho$,

$$
\rho_{t}={ }^{L a w} x_{t} \Longleftrightarrow \rho_{t}=T_{t \#} \rho
$$

Definition 5.10. (McCann's displacement interpolation)

$$
\left(\rho_{t}, 0 \leq t \leq 1\right)
$$

is called the displacement interpolation between ρ and ρ^{\prime}.
Example 5.11. $\rho \sim \mathcal{N}(0, I), \rho^{\prime} \sim \mathcal{N}(a, I)$.

$$
\begin{gathered}
x \mapsto T(x)=x+a \\
X_{t}=(1-t) x+t(x+a)=x+t a \\
X_{t} \sim \mathcal{N}(t a, I)=\rho_{t}
\end{gathered}
$$

Example 5.12. $\rho \sim \operatorname{Unif}(0,1)^{d}, \rho^{\prime} \sim \operatorname{Unif}[0, r]^{d}$.

$$
\rho_{t} \sim[0,1-t+t r]^{d}
$$

$$
T(x)=r x=\nabla\left(\frac{1}{2} r\|x\|^{2}\right)
$$

$$
X_{t}=(1-t) X+\operatorname{tr} X
$$

$$
=(1-t+t r) X
$$

Law of $X_{t}=U n i f[0,1-t+t r]^{d}=\rho_{t}$.

